• Title/Summary/Keyword: Intermolecular

Search Result 458, Processing Time 0.029 seconds

(Photosensitive Polymers VII) Mechanism of Photosensitized Curing Reaction of Cinnamoylated Polymers ((感光性 高分子에 關한 硏究 VII) Cinnamoylated Polymers의 光增感 硬化反應機構)

  • Kim, Kwang-Sup;Shim, Jyong-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.166-174
    • /
    • 1966
  • The multistep mechanism of photosensitized curing reaction cinnamoylated photosensitive polymer is proposed from the energy level diagram of cinnamic acid and sensitizer, and from the fact that excess of sensitizer brings the sensitivity to a limiting value etc. Various factors which have effects on the ability of sensitizer are also discussed. The mechanism involves following steps: activation to the first excited singlet states of cinnamoyl group(C) and sensitizer(S) by their absorption of photon, their intersystem crossing to the lowest triplet state, bimolecular internal quenching by formation of excimer of sensitizer, triplet excitation energy transfer and intermolecular addition between cinnamoyl group in ground state and that in triplet state. The rate equation derived from this mechanism is $-\frac{d[C]}{dt} = \frac{K_1[C]}{K_2 + [C]}[\frac{I^c_{abs}}{K_3 + [S]} + \frac{K_4[C]}{(K_5 + [C])(K_6 + [S])}(I^s_{abs} + \frac{K_7I^c_{abs}[S]}{K_8 + [S]})]$ where $I^c_{abs}\;and\;I^s_{abs}$: the rates of absorption of photon by cinnamoyl group and sensitizer $K_n$: Constants. It is proved with the cinnamate of poly(glyceryl phthalate)(PGC) in the absence of sensitizer using the infrared analytical method and successfully applied for the experimental data reported on the effects of the degree of cinnamoyl esterification and the concentration of sensitizer upon the sensitivity.

  • PDF

Conformation and Reactivity of Herbicidal Benzenesulfonyl urea Compounds (제초성 Benzenesulfonyl urea계 화합물의 형태와 반응성)

  • Yu, Seong-Jae;Lee, Sang-Ho;Ko, Young-Kwan;Sung, Nak-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.235-240
    • /
    • 1996
  • The most stable stereo conformer in non substituted benzenesulfonyl urea, 1 was the II-keto form, which the molecule was intramolecular associated(H-bond) coformer between imide group and N atom on the Pyrimidine ring. The hydrolytic degradation of 2 derivatives were proceeds by nucleophilic addition reaction(p<0) with orbital controlled intermolecular interaction between LUMO with electron donating$(\sigma<0)$ groups of 2 and HOMO of water molecule. N-(4,6-disub. pyrimid ine-2-yl)aminocarbonyl-2-(1,1-dimethoxy-2-fluoro)ethylbenze nesulfonamides,3 and N-(4,6-disub. triazine-2-yl)aminocarbonyl-2-(1,1-d imethoxy-2-fluoro)ethylbenzenesulfonamides,4 we re synthesized and their herbicidal activities in vivo against bulrush (Scirpus juncoides.) were measured by the pot test under the paddy conditions And the structure activity relationships(SAR) were analyzed by the multiple regression technique. The results of the SAR suggested that the 3 and 4 derivatives indicated dependent on the hydrophobicity of the 4,6-disubstituents and the heterocyclo group, where the optimal value $((log\;P)_{opt.}=0.89)$ of hydrophobicity was 0.89. The pyrimidine substituents, 3 showed higher herbicidal activity than the triazine substituents, 4. Among them, 4,6-dimethoxypyrimidine substituent, 3a showed the best herbicidal activity.

  • PDF

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

Study on Physical Properties of Synthesized Water-based Tackifier According to Acrylic Monomer Structure and Content (아크릴 단량체 구조 및 조성에 따른 수계 점착부여제의 합성 및 물성 연구)

  • Kim, Se-Jin;Baek, Lan-Ji;Jeong, Boo-Young;Huh, PilHo;Cheon, JungMi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • There has been a growing demand for water based-type PSA due to environmental regulations for solvent-type PSA. And accordingly, there is a growing expectation as well for tackifiers used to compensate for the problem of deterioration of physical properties. Therefore, In this study, water-based tackifiers were synthesized by changing the contents of hard and functional acrylic monomers CHMA, IBOA, and AA. And these were added to the pressure-sensitive adhesive at 10 phr and their physical properties were compared. Tackiness slightly decreased as CHMA increased and IBOA decreased. Since the intermolecular bonding force increased due to the increase in AA content, the lower the AA content showed better results. Peel strength increased as the tackifiers were added because the fluidity of the polymer chain increased. And higher AA content showed better results because more hydrogen bonds were formed. The holding power tended to decrease as CHMA increased because the content of IBOA relatively decreased which has a large influence on the holding power. And higher AA content showed better results.

Polymerization of HEMA by Electron beam Irradiation and Fabrication of Soft contact lens (전자빔조사에 의한 HEMA의 중합과 소프트콘택트렌즈 제조)

  • Hwang, Kwang-Ha;Shin, Joong-Hyeok;Sung, Yu-Jin;Jeong, Keun-Seung;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • Purpose: Polymerization of HEMA(2-hydroxyethyl methacrylate) which can be used in the soft contact lens has been performed by using electron beam(EB) irradiation, and examined the best condition for the polymerization. Comparing the physical properties of the contact lenses to the one fabricated by thermal polymerization method, we check the use possibility of the EB irradiation to the fabrication of the soft contact lens. Methods: We investigated the degree of polymerization of the HEMA according to the composition of the monomer, the additive ratio and the dose of electron beam (0~120 kGy). The degree of polymerization was measured depending on the EB dose to research the best synthetic condition under the EB irradiation. The physical properties of the contact lens such as water content(%), oxygen transmissibility(Dk/t) and optical transmittance were analysed by using the FT-IR results with comparing the two different polymerization method (thermal and electron beam polymerization) with same additive ratio. Results: When the dose of electron beam was above 100 kGy, the degree of polymerization of HEMA was above 99% with regardless using cross-linker and initiator. The water content of the lens fabricated by EB method showed 10% higher than the one by the thermal method which was 40%. The lens fabricated by EB method also showed higher oxygen transmissibility(Dk/t) as same with the water content, and showed twice higher value in the lens fabricated by pure HEMA. According to the FT-IR results, hydrophilic property of the lens fabricated by EB method was increased due to increasing the intermolecular hydrogen bonding. It showed above 90% optical transmittance in the visible range of wavelength on the contact lenses fabricated by the both of two different polymerization method. Conclusions: The polymerization of HEMA without cross-linker and initiator was successful above 100 kGy of EB irradiation. Moreover the lens fabricated from the polymer synthesized by pure HEMA with 100 kGy of EB showed the highest water content and oxygen transmissibility. Therefore EB irradiation is another possible method to synthesize the polymer which can be used for the soft contact lens.

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF