• 제목/요약/키워드: Intermolecular

검색결과 459건 처리시간 0.023초

MNDO Studies on Intramolecular Proton Transfer Equilibria of Acetamide and Methyl Carbamate$^1$

  • Lee, Ik-Choon;Kim, Chang-Kon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.395-399
    • /
    • 1986
  • Intramolecular proton transfer equilibria of acetamide and methyl carbamate have been studied theoretically by MNDO MO method. For both substrates, carbonyl-O protonated tautomer was found to be the most stable form, the next most stable one being N-protonated form. Gas phase proton transfers take place by the 1,3-proton rearrangement process and in all cases have prohibitively high activation barriers. When however one solvate water molecule participates in the process, the barriers are lowered substantially and the process proceeds in an intermolecular manner through the intermediacy of the water molecule via a triple-well type potential energy surface; three wells correspond to reactant(RC), intermediate(IC) and product complex(PC) of proton donor-acceptor pairs whereas two transition states(TS) have proton-bridge structure. General scheme of the process can be represented for a substrate with two basic centers(heteroatoms) of A and B as, $$ABH\limits^+\;+\;H_2O\;{\to}\;ABH\limits^+{\cdots}{\limits_{RC}}OH_2\;{\to}\;AB{\cdots}H\limits_{TS}^+{\cdots}{\limits_{1}}OH_2\;{\to}\;AB{\cdots}{\limits_{IC}}H\limits^+OH_2\;{\to}\;BA{\cdots}H\limits_{TS}^+{\cdots}{\limits_{2}}OH_2\;{\to}\;BA H\limits^+{\cdots}{\limits_{PC}}OH_2\;{\to}\;BAH\limits^+\;+\;H_2O$$ Involvement of a second solvate water had negligible effect on the relative stabilities of the tautomers but lowered barrier heights by 5∼6 Kcal/mol. It was calculated that the abundance of the methoxy-O protonated tautomer of the methyl carbamate will be negligible, since the tautomer is unfavorable thermodynamically as well as kinetically. Fully optimized stationary points are reported.

비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향 (Influence of Surfactant on the Iodine Complex Formation of Some Non-ionic Polymers)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1031-1037
    • /
    • 2018
  • 수용성 비이온고분자인 Polyvinylalcohol (PVA), Polyvinylpyrrolidone (PVP), Hydroxypropyl cellusoe (HPC)와 iodine과의 착물 형성에 대한 계면활성제의 영향을 알아보기 위해 Sodiumdodecylsulfate을 포함하는 수용액에서 이들 사이의 반응을 수행하였다. PVP와 HPC에서 tri-iodide band의 적색 이동에 의하여 착물이 만들어졌다는 것을 알게되었고, PVA-iodine 착물에서는 500 nm 부근에서 고유의 특색있는 띠를 나타내었다. SDS 계면활성제의 존재는 PVA-iodine 착물의 파괴를 가져왔고, 고유의 푸른색도 사라지게 만들었다. 그러나 SDS 단량체는 PVP, HPC와 iodine의 착물 형성을 도와주는 경향을 나타내었다. 고분자 용액에서 겔이 만들어지는 것을 방해하는 n-propanol은 고분자-iodine 착물이 형성되는 것을 도와주었다. SDS가 있을 때와 없을 경우의 영향을 알아보기 위해 순수한 HPC와 HPC-iodine 착물을 만들고 이들의 성질을 조사하였다.

시간 및 온도변화에 따른 폴리아크릴로니트릴/디메틸술폭시드 중합체 용액의 유변학적 특성 연구 (Study on Rheological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures)

  • 양재연;이병민;국윤수;김병석;서민강
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.71-77
    • /
    • 2019
  • 본 연구에서는 PAN 섬유용 폴리아크릴로니트릴(PAN)/디메틸술폭시드(DMSO) 용액의 보관시간 및 온도 변화에 따른 구조적 및 유변학적 특성에 대해 고찰하였다. 결과로서, 모든 PAN/DMSO 용액은 온도 변화에 따라 매우 특징적인 유변학적 거동을 보였다. 중합체 용액은 온도가 $40{\sim}70^{\circ}C$의 온도 범위까지 증가함에 따라 복합 점도가 증가하고 손실 계수($tan{\delta}$)가 감소함을 나타내었으며, 낮은 진동수에서 점도가 급격히 증가하는 것을 확인할 수 있었다. 이러한 결과는 저장 시간에 따라 중합체 용액내 물에 의한 분자간 수소 결합으로 겔 고분자 및 고밀도 겔 구조가 형성되었기 때문으로 판단된다.

Silver Colloidal Effects on Excited-State Structure and Intramolecular Charge Transfer of p-N,N-dimethylaminobenzoic Acid Aqueous Cyclodextrin Solutions

  • 최정관;김양희;윤민중;이승준;김관;정새채
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.219-227
    • /
    • 2001
  • The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia /Ib) of DMABA in the aqueous $\alpha-CD$ solutions are greatly decreased while the Ia /Ib values in the aqueous B-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in $\alpha-CD$ or B-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of νs (CO2-)(1380 cm-1 ) with appearance of ν(C-OH)(1280 cm -1) band, respectively. Thus, in the aqueous B-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen-bonded with the secondary hydroxyl group of B-CD while in aqueous and $\alpha-CD$ solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous B-CD solutions the enhancement of the Ia /Ia value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of B-CD as well as the lower polarity of the rim of the B-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/ B-CD complex in the presence of silver colloids.

Effect of length of alkyl chain consisting of fluorine and carbon in self-assembled monolayers

  • Park, Sang-Geon;Lee, Won Jae;Lee, Won Jae;Kim, Tae Wan
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.361-368
    • /
    • 2018
  • We investigated the interfacial properties of fluorocarbon self-assembled monolayers (FC-SAMs) with different alkyl chain lengths. It was found that the substrate characteristics were changed rapidly with the fabrication time and temperature of the SAM. FC-3SAM, which has the shortest alkyl chain in this study, showed a contact angle of $54.1^{\circ}$ when it was fabricated in an electric oven at $60^{\circ}C$ for the first minute. The FC-3SAM showed a contact angle of up to $76.9^{\circ}$ when it was fabricated in an electric oven at the same temperature condition for 180 minutes. FC-10SAM, which has the longest alkyl chain in this study, showed a contact angle of $64.7^{\circ}$ when it was fabricated at a temperature condition of $60^{\circ}C$ for 1 minute, and a contact angle of $98.7^{\circ}C$ at a temperature condition of $60^{\circ}C$ for 180 minutes. It was found that the FC-10SAM shows an increased contact angle and hydrophobic properties due to a well-aligned molecular structure resulting from a strong van der Waals force. In contrast, the FC-3SAM shows a small contact angle due to the intermolecular disorder resulting from a weak van der Waals force. The average roughness of FC-SAMs was investigated using AFM. The surface roughness of FC-SAMs, which verifies the results of contact angle, was confirmed. At a fabrication time of 120 minutes, the FC-10SAM showed an improvement in average roughness by 62% compared to that of FC-3SAM due to its good alignment.

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

  • Jaffal, Sahar Majdi;Al-Najjar, Belal Omar;Abbas, Manal Ahmad
    • The Korean Journal of Pain
    • /
    • 제34권3호
    • /
    • pp.262-270
    • /
    • 2021
  • Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 ㎍ CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 ㎍ O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results: The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 ㎍ 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 ㎍ butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions: O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

소수성의 이미다졸리움 이온성 액체 합성과 이들의 물리화학적 특성 조사 (Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties)

  • 무함마드 살만;이수영;이혜진
    • 공업화학
    • /
    • 제32권3호
    • /
    • pp.277-282
    • /
    • 2021
  • 본 연구에서는 PF6를 음이온으로 하며, 이미다졸리움 계열의 양이온을 변화시키면서 2종의 소수성을 띠는 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체는 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6와 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6이며 이들 각각의 구조는 푸에리에 변환 적외선 분광기와 핵자기공명 분광기를 이용하여 분석하였다. 이와 함께, 합성한 이온성 액체 전해질의 물리적(점도, 이온전도도, 열적 안정성) 및 전기화학적 특성을 조사하고 비교 분석하였다. 그 결과, [BzBIM]PF6의 경우 [PBIM]PF6와 다르게 이미다졸리움 양이온에 π-π 분자 간 결합이 강하게 존재하는 벤질링 기능기를 가지고 있어서 열적 및 전기화학적 특성에서 더 우세한 안정성을 보여주었다.

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • 제13권3호
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • 대한화학회지
    • /
    • 제67권6호
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

LncRNA PART1 Attenuates Myocardial Ischemia-Reperfusion Injury by Regulating TFAP2C/DUSP5 Axis via miR-302a-3p

  • Min Zeng;Xin Wei;Jinchao Zhou;Siqi Luo
    • Korean Circulation Journal
    • /
    • 제54권5호
    • /
    • pp.233-252
    • /
    • 2024
  • Background and Objectives: Myocardial ischemia-reperfusion injury (MIRI) refers to the damage of cardiac function caused by restoration of blood flow perfusion in ischemic myocardium. However, long non-coding RNA prostate androgen regulated transcript 1 (PART1)'s role in MIRI remain unclear. Methods: Immunofluorescence detected LC3 expression. Intermolecular relationships were verified by dual luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assays analyzed cell viability and apoptosis. The release of lactate dehydrogenase was tested via enzyme-linked immunosorbent assay (ELISA). Left anterior descending coronary artery surgery induced a MIRI mouse model. Infarct area was detected by 2,3,5-triphenyltetrazolium chloride staining. Hematoxylin and eosin staining examined myocardial injury. ELISA evaluated myocardial marker (creatine kinase MB) level. Results: PART1 was decreased in hypoxia/reoxygenation (H/R) induced AC16 cells and MIRI mice. PART1 upregulation attenuated the increased levels of Bax, beclin-1 and the ratio of LC3II/I, and enhanced the decrease of Bcl-2 and p62 expression in H/R-treated cells. PART1 upregulation alleviated H/R-triggered autophagy and apoptosis via miR-302a-3p. Mechanically, PART1 targeted miR-302a-3p to upregulate transcription factor activating enhancer-binding protein 2C (TFAP2C). TFAP2C silencing reversed the protected effects of miR-302a-3p inhibitor on H/R treated AC16 cells. We further established TFAP2C combined to dual-specificity phosphatase 5 (DUSP5) promoter and activated DUSP5. TFAP2C upregulation suppressed H/R-stimulated autophagy and apoptosis through upregulating DUSP5. Overexpressed PART1 reduced myocardial infarction area and attenuated MIRI in mice. Conclusion: PART1 improved the autophagy and apoptosis in H/R-exposed AC16 cells through miR-302a-3p/TFAP2C/DUSP5 axis, which might provide novel targets for MIRI treatment.