• Title/Summary/Keyword: Intermolecular

Search Result 459, Processing Time 0.027 seconds

The Crystal and Molecular Structure of Salicylaldehyde-4-piperidinothiosemicarbazone (Salicylaldehyde-4-piperidinothiosemicarbazone의 결정 및 분자구조)

  • Young-Ja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.3-14
    • /
    • 1976
  • The crystal structure of alicylaldehyde-4-piperidinothiosemicarbazone, $C_{13}H_{l7}N_3OS$, has been determined by single crystal X-ray analysis. The crystals are orthorhombic, space group $P2_12_12_1$, with unit cell dimensions a = 6.52(2), b = 13.42(4), c = 14.92(4)${\AA}$. There are four formular units in a unit cell. The structure was solved by the heavy atom method and refined by isotropic block diagonal least-squares methods to a final R value of 0.10 for 1019 observed reflections. The oxygen atom of the hydroxyl group is involved in two hydrogen bonds, one as donor in the intramolecular O-H${\cdots}$N hydrogen bond and the other as acceptor in the intermolecular N-H${\cdots}$O hydrogen bond, the distances of the hydrogen bonds 2.56 and 3.00${\AA}$ respectively.The molecules are joined into infinite columns by the N-H${\cdots}o$O hydrogen bonds which form spirals along the two fold screw axis parallel to the a axis. The molecular columns are held together by van der Waals forces.

  • PDF

Alignments of Reactive Mesogen Using Rubbed Glass Substrates (러빙한 유리 기판을 이용한 반응성 액정 배향)

  • Lee, Mongryong;Bae, Jin Woo;Kim, Anna;Yun, Hyeong Seuk;Song, Kigook
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.174-179
    • /
    • 2015
  • Alignments of photo-reactive mesogen were induced using bare glass substrates without a polymer alignment layer. It was found by using polarized FTIR spectroscopy, polarized microscopy, and birefringence measurement experiments that the reactive mesogen could be aligned along the rubbing direction although the glass substrate without an alignment layer was used. The induction mechanism of the rubbed bare glass is ascribed to that polymers from rubbing clothes are coated on the glass substrate along the rubbing direction and lead the alignment of liquid crystals through intermolecular interactions.

Interaction of Cyclohexane-Methyl Acetate Binary System through Dielectric Properties at Different Temperatures (다른 온도에서 유전 특성을 통한 사이클로헥산-메틸 아세테이드 바이너리 시스템의 상호관계)

  • Kamble, Siddharth P.;Sudake, Y.S.;Patil, S.S.;Khirade, P.W.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.373-378
    • /
    • 2011
  • The present paper reports the study of binary mixtures and their properties over the entire range of composition at temperatures 288, 298, 308 and 318 K. Excess dielectric constant, excess molar volume, excess refractive index, molar refraction and excess molar refraction at different temperatures have been computed from the experimentally measured values of the aforesaid parameters and fitted to the Redlich-Kister equation. Excess dielectric constant, excess molar volume excess molar polarizations are negative whereas excess refractive indices are positive over entire mole fraction of methyl acetate for all temperatures. The results are discussed in light of intermolecular interactions occurring in the binary mixture. Estimated coefficients of the Redlich-Kister polynomials and the standard error along the coefficients are also reported.

Preparation, Structural Investigation and Thermal Decomposition Behavior of Two High-Nitrogen Energetic Materials: ZTO·2H2O and ZTO(phen)·H2O

  • Ma, Cong;Huang, Jie;Zhong, Yi Tang;Xu, Kang Zhen;Song, Ji Rong;Zhang, Zhao
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2086-2092
    • /
    • 2013
  • Two new high-nitrogen energetic compounds $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ have been synthesized (where ZTO = 4,4-azo-1,2,4-triazol-5-one and phen = 1,10-phenanthroline). The crystal structure, elemental analysis and IR spectroscopy are presented. Compound 1 $ZTO{\cdot}2H_2O$ crystallizes in the orthorhombic crystal system with space group Pnna and compound 2 $ZTO(phen){\cdot}H_2O$ in the triclinic crystal system with space group P-1. In $ZTO(phen){\cdot}H_2O$, there is intermolecular hydrogen bonds between the -NH group of ZTO molecule (as donor) and N atom of phen molecule (as acceptor). Thermal decomposition process is studied by applying the differential scanning calorimetry (DSC) and thermo thermogravimetric differential analysis (TG-DTG). The DSC curve shows that there is one exothermic peak in $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$, respectively. The critical temperature of thermal explosion ($T_b$) for $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ is $282.21^{\circ}C$ and $195.94^{\circ}C$, respectively.

Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

  • Zhang, Ning;Li, Weizhong;Chen, Cong;Zuo, Jianguo;Weng, Lindong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2711-2719
    • /
    • 2013
  • Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions.

Crystal Structure of N[1(benzotriazol-1-yl)butyl]-p-nitroaniline (N-[1-(benzotriazol-1-yl)butyl]-p-nitroaniline의 구조)

  • Jo, So-Ra;Kim, Mun-Jip;Seong, Nak-Do
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.78-84
    • /
    • 1994
  • The crystal structure of N-11-(benzotriazol-1-yl)butyl]-P-nitroaniline ( C16H17N502) has been determinedfromsingle crystal x-ray diffractionstudy:C16H17N502 monoclinic, P21/n, a=17542(2)A, b=10.755(3)A, c=8.891(1)A, β=104.58(1)˚, V=1623.4(5)A3, 7=293(2)K, Z=4, Cuka(A = 1.5418A) , The molecular structure was solved was by direct meshed refined by full-matrix least squares to a final R =0.0411 for 2248 unique observed [F≥4o(p) ] reflections and 255 Parameters. The crystal structure is stabilized by intermolecular N (11) -Hl 1 (Nl 1) ‥‥N (3) hydrogen bond with N(11) ‥‥ N(3) =3.136(2)A and N(11)-Hll(Nll)‥‥N(3) =164.1(15) ˚.

  • PDF

Studies on Cure Behaviors and Rheological and Mechanical Properties of Epoxy/Polyurethane Blend System initiated by Latent Thermal Catalyst (열잠재성 촉매에 의한 에폭시/폴리우레탄 블랜드계의 경화거동, 유변학적 및 기계적 물성에 관한 연구)

  • Gang, Jun-Gil;Gwon, Su-Han;Park, Su-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.233-240
    • /
    • 2002
  • In this work, the cure kinetics and rheological and mechanical properties of diglycidylether of bispheonol A (DGEBA, EP)/polyurethane (PU) blends were investigated. The 1 wt% N-benzylpyrazinium hexafluoroantiminate (BPH) was used as a latent thermal catalyst. Latent properties were performed by measurement of the conversion as a function of reaction temperature using DSC. And the rheological properties of the blend systems were investigated under isothermal conditions using a rheometer. Crosslinking activating energies (Ec) were also determined from the Arrhenius equation based on gel time and curing temperature. The impact strengths were measured as mechanical properties of the casting specimens. The BPH in the blend systems could be an excellent latent thermal catalyst without any co-initiator. The rheological results showed that Ec was highest when PU content was 30 wt% which was in good agreement with the impact strengths. This was probably due to the intermolecular hydrogen bonding between the hydroxyl group in PU and EP, resulting in increasing the crosslinking density.

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl·2H2O

  • Pu Su Zhao;Lu De Lu;Fang Fang Jian
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.334-338
    • /
    • 2003
  • The crystal structure of $[Co(phen)_2(Cl)(H_2O)] Clㆍ2H_2O$(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P1, with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)${\AA}$ ${\alpha}$=64.02(1), ${\beta}$=86.364(9), ${\gamma}=78.58(2)^°$, and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33${\AA}$). The intermolecular hydrogen bonds connect the $[Co(phen)_2(Cl)(H_2O)]1+,\;H_2O$ moieties and chloride ion.

Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF

  • Oh, Hee-Gyun;Ree, Jong-Baik;Lee, Sang-Kwon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1641-1647
    • /
    • 2006
  • Vibrational relaxation and competitive C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited methylpyrazine in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited methylpyrazine upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm^{-1}$. Above the energy content of 45,000 $cm^{-1}$, however, energy loss decreases. The temperature dependence of energy loss is negligible between 200 and 400 K, but above 45,000 $cm^{-1}$ the energy loss increases as the temperature is raised. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF, that is, relatively large amount of translational energy is transferred in a single step. On the other hand, energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content ET of methylpyrazine is sufficiently high, either or both C-H bonds can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the direct intermolecular energy flow from the direct collision between the ring C-H and HF but the result of the intramolecular flow of energy from the methyl group to the ring C-H stretch.

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.