• Title/Summary/Keyword: Intermolecular

Search Result 461, Processing Time 0.029 seconds

Ketyl radical formation of excited 1, 8-naphthalimides in protic polar solvent

  • Cho, Dae Won;Cho, Dae Won;Park, Hea Jung;Yoon, Ung Chan;Lee, Myoung Hee;Im, Chan
    • Rapid Communication in Photoscience
    • /
    • v.1 no.2
    • /
    • pp.35-37
    • /
    • 2012
  • Photoinduced electron-transfer process of 1,8-naphthalimide-linker-trimethylsilane (NI-O3-TMS, O3 = 3,6,9-trioxaundecyl) and NI-O3 has been investigated using the transient absorption measurements in $CH_3CN$ and $CH_3CN/H_2O$. The excitation of NI-O3-TMS in $CH_3CN$ produced the NI radical anion ($NI^{{\cdot}-}$) with a transient absorption band around 413 nm, via the intermolecular electron-transfer between NI moieties in the excited singlet state. In contrast, in a protic polar solvent mixture of $CH_3CN/H_2O$, a proton abstraction process occurred from $NI^{{\cdot}-}$ to generate the NI ketyl radical ($NIH^{\cdot}$), which showed a transient absorption band around 405 nm. The decay time constants of $NIH^{\cdot}$ were quite long compared to those of $NI^{{\cdot}-}$ in $CH_3CN$.

Molecular Dynamics Study on the Pattern Transfer in Nanoimprint Lithography (분자 동역학을 이용한 나노임프린트 리소그래피에서의 패턴 전사에 관한 연구)

  • Kang Ji-Hoon;Kim Kwang-Seop;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.177-184
    • /
    • 2005
  • The molecular dynamics simulation of nanoimprint lithography (NIL) using $SiO_2$ stamp and amorphous poly-(methylmethacrylate) (PNMA) film is performed to study pattern transfer in NIL. Force fields including bond, angle, torsion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and $SiO_2$ stamp. Nose-Hoover thermostat is used to control the system temperature and cell multipole method is adopted to treat long range interactions. The deformation of PMMA film is observed during pattern transfer in the NIL process. For the detail analysis of deformation characteristics, the distributions of density and stress in PMHA film are calculated. The adhesion and friction forces are obtained by dividing the PMMA film into subregions and calculating the interacting force between subregion and stamp. Their effects on the pattern transfer are also discussed as varying the indentation depth and speed.

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

Visualizing Halogen Bonds in a Two-dimensional Supramolecular System

  • Yun, Jong-Geon;Son, Won-Jun;Jeong, Gyeong-Hun;Kim, Ho-Won;Han, Seung-U;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.38-38
    • /
    • 2011
  • Covalently bonded halogen ligands possess unusual charge distributions, attracting both electrophilic and nucleophilic molecular ligands to form halogen bonds. In many biochemical systems, halogen bonds and hydrogen bonds coexist. The interplay between halogen and hydrogen bonds has been actively studied in various three-dimensional bulk molecular co-crystals. It was found that halogen bonds could be complementary to hydrogen bonds due to their similar bond strength and dissimilar directionality. In those ensemble-averaging approaches, however, it was not possible to extract local information such as individual bond configurations and nano-level domain structures, which is a crucial part of supramolecular studies. In this study, we directly visualize the individual molecular configuration of a brominated molecule and the role of halogen bonds on Au(111) using scanning tunneling microscopy. The precise arrangement of observed molecular structures was reproduced by first-principle studies and explained in the context of halogen and hydrogen bonds. We discuss the distances and the strengths of the observed halogen bonds and hydrogen bonds, which are consistent with previous bulk data.

  • PDF

A Lattice Model for Intra-molecular and Inter-molecular Association in Mixture containing Surfactants (계면활성제를 함유한 혼합물에서 내외부 분자회합을 위한 격자모델)

  • Shin, Moon-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1768-1772
    • /
    • 2010
  • Intra-molecular association is an important contribution to the overall hydrogen bonding in surfactant systems, especially in systems of colloidal and biological interest. Amphiphile systems, especially micelle and microemulsion systems, showed highly non-ideal behavior due to the intermolecular association and intra-molecular association. The objective of this research is to present a lattice fluid equation of state that combines the quasi-chemical nonrandom lattice fluid model with modified Veytsman statistics for intra + inter molecular association to calculate phase behavior for mixture containing surfactant systems. The lattice model could describe the literature data well for alkane and surfactant systems.

Preparation and Characterization of Chitosan/Cellulose Acetate Blend Film (키토산/셀룰로오스 아세테이트 복합필름의 제조와 특성)

  • Jung, Young-Jin;An, Byung-Jae;Choi, Hae-Wook;Kim, Hong-Sung;Lee, Young-Hee
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.10-17
    • /
    • 2007
  • Chitosan(CS) and cellulose acetate(CA) composite films were prepared using formic acid as a cosolvent by casting, solvent evaporating and neutralization method. This study examines if the blending method, which uses formic acid as a cosolvent is efficient in improving the mechanical properties of CS film, especially wet strength and elongation. Formic acid is an effective cosolvent for the blend of CS and CA. Under wet condition, tensile strength and elongation of the composite films were obviously higher than those of the films made from pure CS. FTIR, DSC, and X-ray diffraction showed that the composite films exhibit a high level of compatibility and that strong interaction between the CS and CA was caused by intermolecular hydrogen bonding. The affinity series of composite film to transition metal ions are Cu(II) > Cd(II) > Cr(III). The adsorption of Cu((II) ion was shown to be highly pH sensitive.

Recent Advances in Tyrosinase Research as An Industrial Enzyme (산업용 효소로써 티로시나아제 연구의 최근 동향)

  • Kim, Hyerin;Kim, Hyunmi;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Tyrosinases catalyze the hydroxylation of monophenolic compounds and the conversion of o-diphenols to oquinones. The enzymes are mainly involved in the modification of tyrosine into L-3,4-dihydroxyphenyl-alanine (L-DOPA) and DOPA/DOPAquinone-drived intermolecular cross-linking, which play the key roles of pigmentation to the cells. It is ubiquitously distributed in microorganisms, plants, and animals all around the nature world. They are classified as copper- containing dioxygen activating enzymes; two copper ions are coordinated with six histidine residues in their active sites and they are distinguished as met-, deoxy-, and oxy-form depending on their oxidative states. Natural extraction and recombinant protein approaches have been tried to obtain practical amounts of the enzymes for industrial application. Tyrosinases have been widely applied to industrial and biomedical usages such as detoxification of waste water containing phenolic compounds, L-DOPA as a drug of Parkinson's disease, biomaterials preparation based on the cross-linking ability and biosensors for the detection of phenolic compounds. Therefore, this review reports the mechanism of tyrosinase, biochemical and structural features and potential applications in industrial field.

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

Multimerization of Bovine Thyroglobulin, Partially Unfolded or Partially Unfolded/Reduced; Involvement of Protein Disulfide Isomerase and Glutathionylated Disulfide Linkage

  • Liu, Xi-Wen;Sok , Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1275-1283
    • /
    • 2004
  • Fate of the nascent thyrolglobulin (Tg) molecule is characterized by multimerization. To establish the formation of Tg multimers, the partially unfolded/reduced Tg or deoxycholate-treated/ reduced Tg was subjected to protein disulfide isomerase (PDI)-mediated multimerization. Oxidized glutathione/PDI-mediated formation of multimeric Tg forms, requiring at least an equivalent molar ratio of PDI/Tg monomer, decreased with increasing concentration of reduced glutathione (GSH), suggesting the oxidizing role of PDI. Additional support was obtained when PDI alone, at a PDI/Tg molar ratio of 0.3, expressed a rapid multimerization. Independently, the exposure of partially unfolded Tg to GSH resulted in Tg multimerization, enhanced by PDI, according to thiol-disulfide exchange. Though to a lower extent, a similar result was observed with the dimerization of deoxycholate-pretreated Tg monomer. Consequently, it is implied that intermolecular disulfide linkage may be facilitated at a limited region of unfolded Tg. In an attempt to examine the multimerization site, the cysteine residue-rich fragments of the Tg were subjected to GSH-induced multimerization; a 50 kDa fragment, containing three vicinal dithiols, was multimerized, while an N-terminal domain was not. Present results suggest that the oxidase as well as isomerase function of PDI may be involved in the multimerization of partially unfolded Tg or deoxycholate-treated Tg.

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul;Kim, Ki-Wan;Mamun, Abdulla H.;Lee, Ha-Jin;Hahn, Jae-Rayng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.162-167
    • /
    • 2010
  • We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.