• Title/Summary/Keyword: Intermolecular

Search Result 458, Processing Time 0.026 seconds

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils

  • Chae, Jong-Bok;Yu, Soo-Chang;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.193-199
    • /
    • 2007
  • Raman and fluorescence spectroscopies were employed to study the coil effects on the intermolecular structure of a rod-coil liquid crystalline (LC) oligomer, the esterification products of ethyl 4-[4'-oxy-4-biphenylcarbonyloxy]- 4'-biphenylcarboxylate with poly(propylene)oxides (PPO) (DP=12) and poly(ethylene oxide)s (PEO) (DP=12). Three different vibrational modes (carbonyl, aromatic C-H, and aromatic C=C) obtained from the Raman experiment at variable temperature indicate that PPO and PEO coils induce the hydrogen bonding in a different manner. Further information about the micro-environment around the mesogenic unit obtained by fluorescence excitation spectra of P12-4 (LC with PPO coil) and 12-4 (LC with PEO coil) suggests that the mesogenic unit of P12-4 is quite different from that of 12-4 in intermolecular structure. This study supports the results obtained only from Raman spectroscopy, providing more accurate information about the intermolecular structural changes of liquid crystalline polymers at a molecular level during the phase transitions.

A Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence

  • Kim, Dongwook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2738-2742
    • /
    • 2014
  • Geometry relaxation effects on the formation of benzene excimer were investigated by means of ab initio calculation at SOS-CIS($D_0$)/aug-cc-pVDZ level. In the case of T-shaped dimer configuration, intermolecular interactions in the excited states are found to be nearly the same as those in the ground state and structural deformations are limited within a single molecule; the geometry relaxation effects are then negligible and singlet-triplet energy gap remains constant. As for face-to-face eclipsed dimer, on the other hand, both molecules undergo structural change. As a result, intermolecular interactions in the excited states are significantly different than those in the ground state. Although the intermolecular distances obtained from potential energy curve calculation with frozen molecular structures are in qualitative agreement, the excited-state binding energies are notably overestimated with respect to those at optimized structures. In particular, the effects are calculated to be larger in $T_1$ state and hence singlet-triplet energy gap, which reduces markedly in this configuration, is underestimated without relaxation.

Functional Characteristics of Cyclodextrin Glucanotransferase from Alkalophilic Bacillus sp. BL-31 Highly Specific for Intermolecular Transglycosylation of Bioflavonoids

  • Go, Young-Hoon;Kim, Tae-Kwon;Lee, Kwang-Woo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1550-1553
    • /
    • 2007
  • The functional characteristics of a ${\beta}$-cyclodextrin glucanotransferase (CGTase) excreted from alkalophilic Bacillus sp. BL-31 that is highly specific for the intermolecular transglycosylation of bioflavonoids were investigated. The new ${\beta}$-CGTase showed high specificities for glycosyl acceptor bioflavonoids, including naringin, rutin, and hesperidin, and especially naringin. The transglycosylation of naringin into glycosyl naringin was then carried out under the conditions of 80 units of CGTase per gram of maltodextrin, 5 g/l of naringin, 25 g/l of maltodextrin, and 1 mM $Mn^{2+}$ ion at $40^{\circ}C$ for 6 h, resulting in a high conversion yield of 92.1%.

Theoretical study of the Reactions of $H+H_2$ and Its Isotopic Variants Inter- and Intramolecular Isotope effect

  • 성주범
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.634-641
    • /
    • 1998
  • Quasiclassical trajectory calculations were carried out for the reactions of $H+H_2$ (V=O, J=O) and its isotope variants on the Siegbahn-Liu-Truhlar-Horowitz potential energy surface for the relative energies E between 6 and 150 kcal/mol. The goal of the work was to understand the inter- and intramolecular isotope effects. We examine the relative motion of reactants during the collision using the method of analysis that monitors the intermolecular properties (internuclear distances, geometry of reactants, and final product). As in other works, we find that the heavier the incoming atom is, the greater the reaction cross section is at the same collision energy. Using the method of analysis we prove that the intermolecular isotope effect is contributed mainly by differences in reorientation due to the different reduced masses. We show that above E=30 kcal/mol recrossing also contributes to the intermolecular isotope effect. For the intramolecular isotope effect in the reactions of H+HD and T+HD, we reach the same conclusions as in the systems of $O(^3P)+HD$, F+HD, and Cl+HD. That is, the intramolecular isotope effect below E=150 kcal/mol is contributed by reorientation, recrossing, and knockout type reactions.

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions

  • Sugiki, Toshihiko;Lin, Yuxi;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.

Syntheses and Photofading of Intermolecular Charge-Transfer Complex Dyes of Phenothiazine and Quinonoid Compounds (Phenothiazine과 Quinone계 분자간 전하 이동형 색소의 합성 및 광 퇴색)

  • 김성훈;이순남;임용진
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from phenothiazine as donor and quinonoid compounds as accepters were evaluated as coloring matter. Light fastness of the intermolecular charge-transfer(CT) complex dyes as well as absorption wavelength is an important factor when the complexes are applied to coloring matters. The photofading mechanism of CT complex dyes of phenothiazine and accepters were examined. The addition of effective radical scavenger, antioxidant and photostabilizer gave a remarkable enhancement of the photostability of CT dyes.

  • PDF

Modeling and Simulation of Nanorobotic Manipulation with an AFM probe

  • Kim, Deok-Ho;Park, Jungyul;Kim, Byungkyu;Kim, Kyunghwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.6-108
    • /
    • 2002
  • It is greatly important to understand the mechanics of AFM-based nanorobotic manipulation for efficient and reliable handling of nanoparticles. Robust motion control of an AFM-based nanorobotic manipulation is much challenging due to uncertain mechanics in tip-sample interaction dominated by surface and intermolecular force and limitations in force and visual sensing capability to observe environment. This paper investigates a nanomechanic modeling which enables simulation for AFM-based nanorobotic manipulation , and its application to motion planning of an AFM-based nanorobot. Based on the modeling of intermolecular and adhesion force in AFM-based nanomanipulation, the behaviors of an AFM ca...

  • PDF

Study of Molecular Reorientation in Liquid with Raman Spectroscopy. Intermolecular Interaction of Hexafluorobenzene with Benzene

  • Hwang, Hyun-Jin;Kim, Kwan;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.6
    • /
    • pp.245-248
    • /
    • 1984
  • Raman spectroscopy was used to study the reorientational motion of hexafluorobenzene in benzene and also in neutral solvents. From the viscosity dependence of the reorientation time, intermolecular interaction in the systems was investigated. No evidence was found to support the presence of long-lived 1:1 complex of hexafluorobenzene and benzene. The unusual viscosity dependence of the reorientational motion observed in the systems was explained as due to the formation of transient complexes.

Approach to the Total Synthesis of Acanthoside-D

  • Ngoc, Thyen-Truong;Park, Hae-Il
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.186.4-187
    • /
    • 2003
  • Acanthoside-D, one of major components of Acanthopanacis Cortex, is known as a ginseng-like substance. it has been known to possess diverse biological effects. Acanthoside-D has a furofuran lignan structure and the synthesis of which poses interesting and often unsolved proplems of stereocontrol. Although a few interesting syntheses providing this natural product have been reported, an intermolecular McMurry coupling - intramolecular Mitsunobu cyclization route has not yet been explored. We report here a short and efficient synthetic pathway to the total synthesis of Acanthoside-D from aryl aldehydes and methyl acrylates via Baylis-Hillman reaction, intermolecular McMurry coupling and intramolecular Mitsunobu cyclization as key reaction.

  • PDF