• Title/Summary/Keyword: Intermetallics.

Search Result 115, Processing Time 0.02 seconds

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae;Cho, Young-Hee;Jung, Jae-Gil;Yoon, Woon-Ha;Lee, Young-Kook;Lee, Jung-Moo
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1376-1385
    • /
    • 2018
  • Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal (삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성)

  • Park, Sung-Hyun;Kim, Ki-Young;Park, Jong-Moon;Choi, In-Chul;Ito, Kazuhiro;Oh, Myung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition (Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering (펄스전류 활성 소결에 의해 제조된 나노크기의 TiAl계 금속간화합물의 미세구조와 기계적 특성에 미치는 고에너지 기계적 밀링시간의 영향)

  • Kim, Ji-Young;Woo, Kee-Do;Kang, Duck-Soo;Kim, Sang-Hyuk;Park, Snag-Hoon;Zhang, Deliang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.

Structure and Growth of Tin Whisker on Leadframe with Lead-free Solder Finish (무연솔더 도금된 리드프레임에서 Sn 위스커의 성장과 구조)

  • Kim Kyung-Seob;Leem Young-Min;Yu Chong-Hee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.1-7
    • /
    • 2004
  • Tin plating on component finishes may grow whiskers under certain conditions, which may cause failures in electronics equipment. To protect the environment, 'lead-free' among component finishes is being promoted worldwide. This paper presents the evaluation results of whiskers on two kinds of lead-free plating materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent type in matt Sn plating and striated type in malt Sn-Bi. The whisker growth in Sn-Bi plating was shorter than that in Sn plating. In FeNi42 leadframe, the $7.0{\~}10.0{\mu}m$ diameter and the $25.0{\~}45.0{\mu}m$ long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule(nuclear state) grew on the surface, and in the 600 cycles, a $3.0{\~}4.0{\mu}m$ short whisker grew. After 600 cycles, the ${\~}0.34{\mu}m$ thin $Ni_3Sn_4$ formed on the Sn-plated FeNi42. However, we observed the amount of $0.76{\~}1.14{\mu}m$ thick $Cu_6Sn_5$ and ${\~}0.27{\mu}m$ thin $Cu_3Sn$ intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.

  • PDF

Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics (합금원소 첨가가 TiAI계의 내산화성에 미치는 영향)

  • Kim, Bong-Gu;Hwang, Seong-Sik;Yang, Myeong-Seung;Kim, Gil-Mu;Kim, Jong-Jip
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.669-680
    • /
    • 1994
  • Oxidation behaviour of TiAl intermetallic compounds with the addition of Cr, V, Si, Mo, or Nb was investigated at 900~$1100^{\circ}C$ under the atmospheric environment. The reaction products were examined by XRD, SEM equipped with WDX. The weight gain by continuous oxidation increased with the addition of Cr or V, but there was less weight gain when Mo, Si or Nb was added individually. he oxidation rate of Cr- or V-added TiAl was always larger than that of TiAI. However, oxidation rate of Si-, Mo- or Nb-added TiAl was almost same or smaller than that of TiAI. Thus, it is concluded that the addition of Cr or V did not improve the oxidation resistance, whereas the addition of Si, Mo or Nb improved the oxidation resistance. Oxides formed on TiAl with Mo, Si, and Nb were found to be more protective, resulting from the decrease in diffusion rate of the alloying elements and oxygen. Nb strengthened the tendency to form $AI_{2}O_{3}$ in the early stage of oxidation, due to the continuous $AI_{2}O_{3}$ layer formation and dense $Tio_{2}+AI_{2}O_{3}$ layer. According to the Pt-marker test of TiAI- 5wt%Nb, oxygen diffused mainly inward while oxides were formed on the substrate surface. Upon thermal cyclic oxidation at $900^{\circ}C$, it is shown that the addition of Cr or Nb improved the adherence of oxide scale to the substrate.

  • PDF

Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite ($MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성)

  • Yoon, Han-Ki;Lee, Sang-Pill;Yoon, Kyong-Wok;Kim, Dong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF

Effect of Heat Treatment on the Formation Behavior of Intermetallic Compound Layer in Fusion Bonding of Cast Iron and Al Alloy (용융 접합한 주철 - Al 합금의 금속간화합물 층 형성 거동에 미치는 열처리의 영향)

  • Kang, Sung-Min;Han, Kwang-Sik;Kang, Yong-Joo;Kim, Kwang-Won;Im, Ye-Ra;Moon, Ji-Sun;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • Fusion bonding of cast iron and Al alloy is an effective way to improve the properties such as low inertia, high efficiency and corrosion resistance in machinery parts. In case of fusion bonding, intermetallic compound layers are formed at the interface between cast iron and Al alloy interface. It is important to control the intermetallic compound layers for improving bonding strength. The formation behavior of intermetallic compound layer by heat treatment has been investigated. Heat treatment was performed at temperature from $600^{\circ}C$ to $800^{\circ}C$ with $100^{\circ}C$ interval for an hour to investigate the phase transformation during heat treatment. Heat treated specimens were analyzed by using FE-SEM, EPMA and EDS. The EPMA/WDS results revealed that various phases were formed at the interface, which exhibited 4 distinct intermetallic compound layers such as ${\tau}_6-Al_{4.5}FeSi$, ${\tau}_2-Al_3FeSi$, ${\tau}_{11}-Al_5Fe_2Si $and ${\eta}-Al_5Fe_2$. Also, fine precipitation of ${\tau}_1-Al_2Fe_3Si_3$ phase was formed between ${\tau}_{11}$ and ${\eta}$ layer. The phase fraction in intermetallic compound layer was changed by heat treatment temperature. At $600^{\circ}C$, intermetallic compound layer of ${\tau}_6$ phase was mainly formed with increasing heat treatment time. With increasing heat treatment temperature to $800^{\circ}C$, however, ${\tau}_2$ phase was mainly distributed in intermetallic compound layer. ${\tau}_1$ phase was remarkably decreased with increasing heat treatment time and temperature.

Magnetic Properties of SmCo Thin Films Grown by Using a Nd-YAG Pulsed Laser Ablation Method (Nd-YAG Pulsed Laser Ablation법으로 제작한 SmCo계 박막의 자기특성)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.30-36
    • /
    • 2000
  • SmCo films were deposited on Si(100) substrate by a Nd-YAG pulsed laser ablation of the targets of Sm$\_$100-x/Co$\_$x/ (73$\leq$x$\leq$93) at the substrate temperature of 600∼700$\^{C}$ and the laser beam energy density of Q switching mode or fixed Q mode. The magnetic properties of the films obtained from the Q switching mode exhibited a 4 $\pi$ Ms of 5200∼7700 Gauss, iHc of 190-250 Oe, and 4$\pi$M$\_$r//4$\pi$M$\_$s/ of 0.4∼0.74, respectively, while the fixed Q mode gave the magnetic properties of corresponding films of a 4$\pi$M$\_$r//4$\pi$M$\_$s/ = 0.32∼0.91 and iHc of 430-6290 Oe, respectively. The fixed Q mode gave the better magnetic properties of the SmCo films which seems to be due to a formation of magnetically hard minor phases in droplet of Sm-rich intermetallics. However, the resultant rough surface of the SmCo films is a problem to be solved by a continued study.

  • PDF