DOI QR코드

DOI QR Code

Microstructure-Strengthening Interrelationship of an Ultrasonically Treated Hypereutectic Al-Si (A390) Alloy

  • Kim, Soo-Bae (Division of Implementation Research, Korea Institute of Materials Science) ;
  • Cho, Young-Hee (Division of Implementation Research, Korea Institute of Materials Science) ;
  • Jung, Jae-Gil (Division of Metallic Materials, Korea Institute of Materials Science) ;
  • Yoon, Woon-Ha (Division of Implementation Research, Korea Institute of Materials Science) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jung-Moo (Division of Implementation Research, Korea Institute of Materials Science)
  • Received : 2018.03.07
  • Accepted : 2018.05.23
  • Published : 2018.11.20

Abstract

Ultrasonic melt treatment (UST) was applied to an A390 hypereutectic Al-Si alloy in a temperature range of $750-800^{\circ}C$ and its influence on the solidification structure and the consequent increase in strength was investigated. UST at such a high temperature, which is about $100^{\circ}C$ above the liquidus temperature, had little effect on the grain refinement but enhanced the homogeneity of the microstructure with the uniform distribution of constituent phases (e.g. primary Si, ${\alpha}-Al$ and intermetallics) significantly refined. With the microstructural homogeneity, quantitative analysis confirmed that UST was found to suppress the formation of Cu-bearing phases, i.e., $Q-Al_5Cu_2Mg_8Si_6$, $Al_2Cu$ phases that form in the final stage of solidification while notably increasing the average Cu contents in the matrix from 1.29 to 2.06 wt%. A tensile test exhibits an increase in the yield strength of the as-cast alloy from 185 to 208 MPa, which is mainly associated with the solute increment within the matrix. The important role of UST in the microstructure evolution during solidification is discussed and the mechanism covering the microstructure-strengthening interrelationship of the ultrasonically treated A390 alloy is proposed.

Keywords

Acknowledgement

Supported by : Korea Institute of Materials Science

References

  1. C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Cooling rate and microstructure of rapidly solidified Al-20wt%Si alloy. Mater. Sci. Eng. A 417(1-2), 275-280 (2006) https://doi.org/10.1016/j.msea.2005.10.040
  2. C.L. Xu, Q.C. Jiang, Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng. A 437(2), 451-455 (2006) https://doi.org/10.1016/j.msea.2006.07.088
  3. P. Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin, Effect of melt overheating, cooling and solidification rates on Al-16wt%Si alloy structure. Mater. Sci. Eng. A 332(1-2), 371-374 (2002) https://doi.org/10.1016/S0921-5093(01)01864-0
  4. W.J. Kyffin, W.M. Rainforth, H. Jones, Effect of phosphorus additions on the spacing between primary silicon particles in a Bridgman solidified hypereutectic Al-Si alloy. J. Mater. Sci. 36, 2667-2672 (2001) https://doi.org/10.1023/A:1017904627733
  5. P. Kapranos, D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodriguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, A. Giese, Thixoforming of an automotive part in A390 hypereutectic Al-Si alloy. J. Mater. Process. Technol. 135, 271-277 (2003) https://doi.org/10.1016/S0924-0136(02)00857-9
  6. H.R. Kotdia, A. Das, Modification of solidification microstructure in hypo- and hyper-eutectic Al-Si alloys under high-intensity ultrasonic irradation. J. Alloys Compd. 620, 1-4 (2015) https://doi.org/10.1016/j.jallcom.2014.09.089
  7. J.G. Jung, S.H. Lee, J.M. Lee, Y.H. Cho, S.H. Kim, W.H. Yoon, Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 669, 187-195 (2016) https://doi.org/10.1016/j.msea.2016.05.087
  8. J.-G. Jung, T.-Y. Ahn, Y.-H. Cho, S.-H. Kim, J.-M. Lee, Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al-Si alloy. Acta Mater. 144, 31-40 (2018) https://doi.org/10.1016/j.actamat.2017.10.039
  9. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon and Breach Science Publishers, Amsterdam, 1998)
  10. G.I. Eskin, Cavitation mechanism of ultrasonic melt degassing. Ultrason. Sonochem. 2(2), 137-141 (1995) https://doi.org/10.1016/1350-4177(95)00020-7
  11. H. Puga, J.C. Teixeira, J. Barbosa, E. Seabra, S. Ribeiro, M. Prokic, The combined effect of melt stirring and ultrasonic agitation on the degassing efficiency of AlSi9Cu3 alloy. Mater. Lett. 63, 2089-2092 (2009) https://doi.org/10.1016/j.matlet.2009.06.059
  12. T.A. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman, Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti. MMTA 41A, 2056-2066 (2010)
  13. G.I. Eskin, Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason. Sonochem. 8, 319-325 (2001) https://doi.org/10.1016/S1350-4177(00)00074-2
  14. L. Zhang, D.G. Eskin, A. Miroux, L. Katgerman, Formation of microstructure in Al-Si alloys under ultrasonic melt treatment, in Light Metals 2012, TMS, ed. by C.E. Suarez (Wiley, Hoboken, 2012), pp. 999-1004
  15. V. Abramov, O. Abramov, V. Bulgakov, F. Sommer, Solidification of aluminium alloys under ultrasonic irradiation using watercooled resonator. Mater. Lett. 37, 27-34 (1998) https://doi.org/10.1016/S0167-577X(98)00064-0
  16. H. Puga, J. Barbosa, C. Costa, S. Ribeiro, A.M.P. Pinto, M. Prokic, Influence of indirect ultrasonic vibration on the microstructure and mechanical behavior of Al-Si-Cu alloy. Mater. Sci. Eng. A 560, 589-595 (2013) https://doi.org/10.1016/j.msea.2012.09.106
  17. I.G. Brodova, P.S. Propel, G.I. Eskin, Liquid Metal Processing (Taylor & Francis, London, 2002)
  18. X.T. Li, T.J. Li, X.M. Li, J.Z. Jin, Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy. Ultrason. Sonochem. 13(2), 121-125 (2006) https://doi.org/10.1016/j.ultsonch.2005.08.005
  19. R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, H. Fu, Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl. Sci. Rep. 7, 41463 (2017) https://doi.org/10.1038/srep41463
  20. M. Prokic, Multifrequency ultrasonic structural actuators, in E.P. Application, ed. (2001)
  21. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic, Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy. J. Mater. Process. Technol. 211, 1729-1735 (2011) https://doi.org/10.1016/j.jmatprotec.2011.05.012
  22. Y.-H. Cho, J.-M. Lee, W.-H. Yoon, J.-G. Jung, Influence of ultrasonic treatment on the microstructure of hypoeutectic Al- 17wt%Si alloys. Mater. Sci. Forum 794-796, 89-94 (2014) https://doi.org/10.4028/www.scientific.net/MSF.794-796.89
  23. A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Sirich hypoeutectic Al-Si alloy. Mater. Chem. Phys. 125, 853-859 (2011) https://doi.org/10.1016/j.matchemphys.2010.09.035
  24. X. Jian, H. Xu, T.T. Meek, Q. Han, Effect of power ultrasound on solidification of aluminum A356 alloy. Mater. Lett. 59, 190-193 (2005) https://doi.org/10.1016/j.matlet.2004.09.027
  25. X. Jian, T.T. Meek, Q. Han, Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scr. Mater. 54, 893-896 (2006) https://doi.org/10.1016/j.scriptamat.2005.11.004
  26. G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. StJohn, The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy. J. Cryst. Growth 408, 119-124 (2014) https://doi.org/10.1016/j.jcrysgro.2014.09.018
  27. G. Wang, Q. Wang, M.A. Easton, M.S. Dargusch, M. Qian, D.G. Eskin, D.H. StJohn, Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium. Sci. Rep. 7, 9 (2017) https://doi.org/10.1038/s41598-017-00053-7
  28. FactSage. http://www.facts age.com. Accessed 3 Feb 2017
  29. A.K. Gupta, M.C. Chaturvedi, A.K. Jena, Effects of silicon additions on aging behaviour of Al-1.52Cu-0.75Mg alloy. Mater. Sci. Technol. 5, 52-55 (1989) https://doi.org/10.1179/mst.1989.5.1.52
  30. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworth & Co, London, 1976)
  31. L.J. Colley, M.A. Wells, W.J. Poole, Microstructure-yield strength models for heat treatment of Al-Si-Mg casting alloy II: modelling microstructure and yield strength evolution. Can. Metall. Quart. 53(2), 138-150 (2014) https://doi.org/10.1179/1879139513Y.0000000111
  32. O.R. Myhr, O. Grong, S.J. Andersen, Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater. 49, 65-75 (2001) https://doi.org/10.1016/S1359-6454(00)00301-3
  33. L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu, G. Yang, The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Mater. Sci. Eng. A 627, 119-126 (2015) https://doi.org/10.1016/j.msea.2014.12.086
  34. T.W. Clyne, W. Kurz, Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 12A, 965-971 (1981)
  35. M.C. Flemings, Solidification Processing (McGraw-Hill, New-York, 1974)
  36. Smithells Metals Reference Book, Eighth edition ed. (Elsevier Butterworth-Heinemann, Oxford 2004)

Cited by

  1. Combined Effects of Ultrasonic Melt Treatment and Cu/Mg Solute on the Microstructure and Mechanical Properties of a Hypoeutectic Al-7Si Alloy vol.50, pp.3, 2019, https://doi.org/10.1007/s11661-018-5069-2
  2. Optimizing the Conditions of Metal Solidification with Vibration vol.9, pp.3, 2018, https://doi.org/10.3390/met9030366
  3. Ultrasonic modulation of phase separation and corrosion resistance for ternary Cu-Sn-Bi immiscible alloy vol.54, pp.None, 2018, https://doi.org/10.1016/j.ultsonch.2019.01.029
  4. Correlation Between Primary Si and Silicide Refinement Induced by Ultrasonic Treatment of Multicomponent Al-Si Alloy Containing Ti, Zr, V, and P vol.25, pp.5, 2018, https://doi.org/10.1007/s12540-019-00297-0
  5. Ultrasonic Processing for Structure Refinement: An Overview of Mechanisms and Application of the Interdependence Theory vol.12, pp.19, 2018, https://doi.org/10.3390/ma12193187
  6. The effect of ultrasonic melt treatment on solid solution treatment temperature and/or time for an Al-7Si-2Cu-1Mg alloy vol.33, pp.2, 2018, https://doi.org/10.1080/13640461.2020.1746895
  7. Controlling Segregation Behavior of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring vol.10, pp.9, 2018, https://doi.org/10.3390/met10091129
  8. Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots vol.11, pp.7, 2021, https://doi.org/10.3390/met11071050