• 제목/요약/키워드: Intermediate Temperature operating Solid Oxide Fuel Cell (IT-SOFC)

검색결과 10건 처리시간 0.023초

Influence of Thermal Conductivity on the Thermal Behavior of Intermediate-Temperature Solid Oxide Fuel Cells

  • Aman, Nurul Ashikin Mohd Nazrul;Muchtar, Andanastuti;Rosli, Masli Irwan;Baharuddin, Nurul Akidah;Somalu, Mahendra Rao;Kalib, Noor Shieela
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.132-139
    • /
    • 2020
  • Solid oxide fuel cells (SOFCs) are among one of the promising technologies for efficient and clean energy. SOFCs offer several advantages over other types of fuel cells under relatively high temperatures (600℃ to 800℃). However, the thermal behavior of SOFC stacks at high operating temperatures is a serious issue in SOFC development because it can be associated with detrimental thermal stresses on the life span of the stacks. The thermal behavior of SOFC stacks can be influenced by operating or material properties. Therefore, this work aims to investigate the effects of the thermal conductivity of each component (anode, cathode, and electrolyte) on the thermal behavior of samarium-doped ceria-based SOFCs at intermediate temperatures. Computational fluid dynamics is used to simulate SOFC operation at 600℃. The temperature distributions and gradients of a single cell at 0.7 V under different thermal conductivity values are analyzed and discussed to determine their relationship. Simulations reveal that the influence of thermal conductivity is more remarkable for the anode and electrolyte than for the cathode. Increasing the thermal conductivity of the anode by 50% results in a 23% drop in the maximum thermal gradients. The results for the electrolyte are subtle, with a ~67% reduction in thermal conductivity that only results in an 8% reduction in the maximum temperature gradient. The effect of thermal conductivity on temperature gradient is important because it can be used to predict thermal stress generation.

중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구 (Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC))

  • 박광진;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구 (Optimization of Operating Conditions for a 10 kW SOFC System)

  • 이율호;양찬욱;양충모;박상현;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

복합 박막 증착 공정을 이용한 중저온 고체산화물 연료전지용 전해질 증착 (Deposition of Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells by Combined Thin Film Deposition Techniques)

  • 하승범;지상훈;와카스 하산 탄비르;이윤호;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.84.1-84.1
    • /
    • 2011
  • Typical solid oxide fuel cells (SOFCs) have limited applications because they operate at high temperature due to low ionic conductivity of electrolyte. Thin film solid oxide fuel cell with yttria stabilized zirconia (YSZ) electrolyte is developed to decrease operating temperature. Pt/YSZ/Pt thin film SOFC was fabricated on anodic aluminum oxide (AAO). The crystalline structure of YSZ electrolyte by sputter is heavily depends on the roughness of porous Pt layer, which results in pinholes. To deposit YSZ electrolyte without pinholes and electrical shortage, it is necessary to deposit smoother and denser layer between Pt anode layer and YSZ layer by sputter. Atomic Layer Deposition (ALD) technique is used to deposit pre-YSZ layer, and it improved electrolyte quality. 300nm thick Bi-layered YSZ electrolyte was successfully deposited without electrical shortage.

  • PDF

IT SOFC 인터커넥터 구동 조건에서의 스테인레스 소재의 산화거동에 미치는 표면전처리의 영향 (Effect of Surface Treatments of Stainless Steels on Oxidation Behavior Under Operating Condition of IT SOFC Interconnect)

  • 문민석;우기도;김상혁;유명한
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.25-31
    • /
    • 2011
  • Solid oxide fuel cells (SOFCs) have many attractive features for widespread applications in generation systems. Recently, stainless steels have attractive materials for metallic bipolar plate because metallic bipolar plates have many benefits compared to others such as graphite and composite bipolar plates. SOFC operates on high temperature of about $800{\sim}1000^{\circ}C$ than other fuel cell systems. Thus, many studies have attempted to reduced the operation temperature of SOFC to about $600{\sim}800^{\circ}C$, which is the intermediate temperature (IT) of SOFC. Low cost and high-temperature corrosion resistance are very important for the practical applications of SOFC in various industries. In this study, two specimens, 304 and 430 stainless steels with and without different pre-surface treatments on the surface were investigated. And, specimens were exposed at high temperature in the box furnace under oxidation atmosphere of $800^{\circ}C$. Oxidation behavior have been investigated with the materials exposed at different times (100 hrs and 400 hrs) by SEM, EDS and XRD. By increasing exposure time, the amount of metal oxide increased in the order like; STS304 < STS430 and As-received < As-polished < Sand-blast specimens.

중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가 (Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC)

  • 김효신;이종호;김호성;이윤성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

Electrochemical performance of double perovskite structured cathodes for intermediate temperature SOFCs

  • Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.56.1-56.1
    • /
    • 2009
  • The intermediate operating temperature of solid oxide fuel cells (IT-SOFCs) have achieved considerable importance in the area of power fabrication. This is because to improve materials compatibility, their long-term stability and cost saving potential. However, to conserve rational cell performance at reduced-temperature regime, cathode performance should be obtained without negotiating the internal resistance and the electrode kinetics of the cell. Recently, double perovskite structure cathodes have been studied with great attention as a potential material for IT-SOFCs. In this study, double-perovskite structured cathodes of $GdBaCoCuO_{5+\delta}$, $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ compositions and $(1-x)GdBaCo_2O_{5+\delta}+xCe_{0.9}Gd_{0.1}O_{1.95}$ (x = 10, 20, 30 and 40 wt.%) composites were evaluated as the cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Electrical conductivity of the cathodes were measured by DC 4-probe method, and the thermal expansion coefficient of each sample was measured up to $900^{\circ}C$ by a dilatometer study. Area specific resistances(ASR) of the $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ cathode and 70 wt.% $GdBaCo_2O5+\delta$ + 30wt.% Ce0.9Gd0.1O1.95 composite cathode on CGO electrolyte substrate were analyzed using AC 3-probe impedance study. The obtained results demonstrate that double perovskite-based compositions are promising cathode materials for IT-SOFCs.

  • PDF

중·저온형 고체산화물 연료전지 공기극의 적용을 위한 Sr이 치환된 이중층 페로브스카이트 기반 복합공기극 물질의 분말 크기 및 열 사이클에 따른 전기화학특성 분석 (Electrochemical Investigation in Particle Size and Thermal Cycles of Sr Doped Layered Perovskite Based Composite Cathodes for Intermediate Temperature-operating Solid Oxide Fuel Cell)

  • 김정현
    • 전기화학회지
    • /
    • 제14권3호
    • /
    • pp.176-183
    • /
    • 2011
  • 본 연구에서는 Sr이 치환된 이중층 페로브스카이트($SmBa_{0.5}Sr_{0.5}Co_2O_{5+{\delta}}$, SBSCO)와 전해질 물질로 사용되는 $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ (CGO91)을 기반으로 한 중 저온형 고체산화물 연료전지 (ITSOFC) 복합공기극의 분말 크기와 열 사이클에 대한 전기화학특성을 연구하였다. 복합공기극의 모체가 되는 SBSCO에 CGO91물질을 이용하여 면적비저항을 확인 한 결과 약 $0.54\sim9.04{\mu}m$의 분말 크기를 보이는 SBSCO와 $0.4\sim42{\mu}m$의 분말 크기를 보인 CGO91이 각각 50 wt%로 구성된 SBSCO : 50 복합공기극이 600 및 $700^{\circ}C$에서 약 0.102 및 $0.013{\Omega}cm^2$의 우수한 면적비 저항을 가지는 것을 확인 하였으며 상대적으로 분말 크기가 큰 CGO91 분말을 이용한 두 개의 공기극의 경우 $700^{\circ}C$에서 약 $0.260{\Omega}cm^2$$0.055{\Omega}cm^2$의 특성을 보여주었다. 10회에 걸친 열 사이클실험을 통하여 SBSCO : 50의 면적비저항은 $0.0193{\Omega}cm^2$에서 $0.094{\Omega}cm^2$로 증가하였으며 7회 이후의 면적비저항은 일정하게 유지됨을 확인하였다.

Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성 (Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method)

  • 이미재;최병현;김세기;지미정
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF

고체 산화물 연료전지 공기극 물질인 $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 및 0.7)의 표면분석 (Surface analysis of $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 and 0.7) as a cathode material for Solid Oxide Fuel Cell)

  • 김정현;이창보;백승욱;박광진;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.196-199
    • /
    • 2007
  • The chemical states of oxygen on the surfaces of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxide systems were investigated by X-ray photoelectron spectroscopy. Merged oxygen peaks of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxides could be divided as five sub-peaks. These five sub-peaks could be defined as lattice oxygen ($O_{L}$). chemisorbed oxygen peaks ($O_{C}$) and hydroxyl condition oxygen peak ($O_{H}$). In case of the $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the binding energy (BE) of oxygen lattice were located at same BE. However, the BE of chemisorbed oxygen peaks including oxygen vacancy shows different BE. Especially, it was found that BE of chemisorbed oxygen peaks was increased when more Sr were substituted. Comparing atomic percentages of oxygens of $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the ratio of $Pr_{0.3}Sr_{0.7}CoO_{3}$ was higher than that of $Pr_{0.5}Sr_{0.5}CoO_{3}$. It showed more chemically adsorbed site including oxygen vacancies were existed in $Pr_{0.3}Sr_{0.7}CoO_{3}$.

  • PDF