• 제목/요약/키워드: Intermediate Feature

검색결과 87건 처리시간 0.022초

Sculptured 포켓 가공을 위한 가공특징형상 추출 (Manufacturing Feature Extraction for Sculptured Pocket Machining)

  • 주재구;조현보
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.455-459
    • /
    • 1997
  • A methodology which supports the feature used from design to manufacturing for sculptured pocket is newly devlored and present. The information contents in a feature can be easily conveyed from one application to another in the manufacturing domain. However, the feature generated in one application may not be directly suitable for another whitout being modified with more information. Theobjective of the paper is to parsent the methodology of decomposing a bulky feature of sculptured pocket to be removed into compact features to be efficiently machined. In particular, the paper focuses on the two task: 1) to segment horizontally a bulky feature into intermediate features by determining the adequate depth of cut and cutter size and to generate the temporal precedence graph of the intermediate features and 2)to further decompose each intermediate feature vertical into smaller manufacturing features and to apply the variable feed rate to each small feature. The proposed method will provid better efficiency in machining time and cost than the classical method which uses a long string of NC codes necessary to remove a bulky fecture.

  • PDF

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • 방송공학회논문지
    • /
    • 제25권7호
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

스테레오 영상 보정 알고리즘에 기반한 새로운 중간시점 영상합성 기법 (A New Intermediate View Reconstruction Scheme based-on Stereo Image Rectification Algorithm)

  • 박창주;고정환;김은수
    • 한국통신학회논문지
    • /
    • 제29권5C호
    • /
    • pp.632-641
    • /
    • 2004
  • 본 논문에서는 비교정 상태의 스테레오 입력영상에 영상보정 알고리즘을 적용한 새로운 중간시점 영상합성 기법을 제시하고 그 성능을 분석하였다. 제시된 방법에서는 먼저, 좌, 우 스테레오 영상의 각 화소 간들에 대한 유사도 및 모서리 검출을 통해 특징점을 추출한 다음, 이들 특징점을 이용하여 스테레오 영상간의 움직임 벡터와 에피폴라 선을 검출하였다. 그리고 스테레오 영상간의 수평선을 일치시킴으로써 좌, 우 스테레오 영상을 보정하고 최적으로 적응적 변위추정 기법을 이용하여 최적화된 중간시점 영상을 합성하였다. CCETT의 'Man' 영상과 스테레오 카메라를 사용하여 촬영한 '사람' 및 '자동차' 영상을 사용한 중간영상 합성 실험결과 본 논문에서 제안된 보정기법으로 교정된 스테레오 영상의 경우가 비교정 상태에 비해 'Man' 영상은 3.6㏈, '사람' 및 '자동차' 영상은 2.59㏈, 1.47㏈의 PSNR이 각각 개선됨이 분석됨으로써 본 논문에서 새로이 제시한 스테레오 영상 보정 알고리즘 기반의 중간시점 영상합성 기법의 실질적 응용 가능성을 제시하였다.

A New Rectification Scheme for Uncalibrated Stereo Image Pairs and Its Application to Intermediate View Reconstruction

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.26-34
    • /
    • 2005
  • In this paper, a new rectification scheme to transform the uncalibrated stereo image pair into the calibrated one is suggested and its performance is analyzed by applying this scheme to the reconstruction of the intermediate views for multi-view stereoscopic display. In the proposed method, feature points are extracted from the stereo image pair by detecting the comers and similarities between each pixel of the stereo image pair. These detected feature points, are then used to extract moving vectors between the stereo image pair and the epipolar line. Finally, the input stereo image pair is rectified by matching the extracted epipolar line between the stereo image pair in the horizontal direction. Based on some experiments done on the synthesis of the intermediate views by using the calibrated stereo image pairs through the proposed rectification algorithm and the uncalibrated ones for three kinds of stereo image pairs; 'Man', 'Face' and 'Car', it is found that PSNRs of the intermediate views reconstructed from the calibrated images improved by about 2.5${\sim}$3.26 dB than those of the uncalibrated ones.

A study on the effectiveness of intermediate features in deep learning on facial expression recognition

  • KyeongTeak Oh;Sun K. Yoo
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.25-33
    • /
    • 2023
  • The purpose of this study is to evaluate the impact of intermediate features on FER performance. To achieve this objective, intermediate features were extracted from the input images at specific layers (FM1~FM4) of the pre-trained network (Resnet-18). These extracted intermediate features and original images were used as inputs to the vision transformer (ViT), and the FER performance was compared. As a result, when using a single image as input, using intermediate features extracted from FM2 yielded the best performance (training accuracy: 94.35%, testing accuracy: 75.51%). When using the original image as input, the training accuracy was 91.32% and the testing accuracy was 74.68%. However, when combining the original image with intermediate features as input, the best FER performance was achieved by combining the original image with FM2, FM3, and FM4 (training accuracy: 97.88%, testing accuracy: 79.21%). These results imply that incorporating intermediate features alongside the original image can lead to superior performance. The findings can be referenced and utilized when designing the preprocessing stages of a deep learning model in FER. By considering the effectiveness of using intermediate features, practitioners can make informed decisions to enhance the performance of FER systems.

깊은 신경망에서 단일 중간층 연결을 통한 물체 분할 능력의 심층적 분석 (Investigating the Feature Collection for Semantic Segmentation via Single Skip Connection)

  • 임종화;손경아
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1282-1289
    • /
    • 2017
  • 최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.

적응적 변이추정 기법을 이용한 새로운 중간시점영상합성 (A New Intermediate View Reconstruction using Adaptive Disparity Estimation Scheme)

  • 배경훈;김은수
    • 한국통신학회논문지
    • /
    • 제27권6A호
    • /
    • pp.610-617
    • /
    • 2002
  • 본 논문에서는 적응적 변이추정 기법을 이용한 새로운 중간시점영상합성 방법을 제시하였다. 즉, 스테레오 입력 영상으로부터 특징값을 추출하고, 설정된 임계값과 비교하여 특징값의 크기를 결정한 다음, 특징값의 크기에 따라 정합창의 크기를 적응적으로 선택하여 정합함으로써 중간시점의 영상을 합성하는 새로운 기법을 제안하였다. 제안된 기법에서는 배경과 같인 특징값이 작은 영역에서는 비교적 큰 정합창에 의한 블록정합이 이루어지고 물체의 윤곽선과 같이 특징값이 큰 영역에서는 상대적으로 작은 정합창에 의한 미세한 정합이 적응적으로 수행되기 때문에 전체적인 정합성능의 개선뿐만 아니라 기존의 기법에서 나타나는 오정합이나 블록화 현상등의 문제점 해결의 가능성을 제시하였다. 또한, 'Parts' 및 'Piano' 영상을 사용한 실험결과 본 논문에서 새로이 제안한 중간시점 영상합성 방법은 기존의 방식에 비해 평균적으로 PSNR은 약 2.32∼4.16dB가 향상되었고, 수행시간은 약 39.34∼65.58% 감소됨을 확인하였다.

선경계 검출에 의한 특징점 추출 (Extraction of Feature Points Using a Line-Edge Detector)

  • 김지홍;김남철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1427-1430
    • /
    • 1987
  • The feature points of an image play a very important role in understanding the image. Especially, when an image is composed of lines, vertices of the image offer informations about its property and structure. In this paper, a series of process for extracting feature points from actual IC image is described. This result can be used to acquire CIF ( Caltech Intermediate Form ) file.

  • PDF

가치분석을 통한 휘처 기반의 요구사항 추적 기법 (A Feature-Oriented Requirement Tracing Method with Value Analysis)

  • 안상임;정기원
    • 한국전자거래학회지
    • /
    • 제12권4호
    • /
    • pp.1-15
    • /
    • 2007
  • 추적 링크는 요구사항과 아키텍처 설계서, 소스 코드, 테스트 케이스 등과 같은 시스템 산출물들 사이의 논리적인 연결을 의미한다. 이러한 추적 링크는 요구사항 변경 영향 분석, 요구사항 충돌 분석, 요구사항 일관성 점검에 매우 유용하다. 그러나, 복잡한 소프트웨어 개발시 많은 다양한 산출물들이 만들어지므로 추적 링크를 생성하거나 운용하는 것은 많은 부담을 초래한다. 본 논문은 가치분석을 근간으로 하고 휘처를 중간 매개체로 활용하는 휘처 기반의 요구사항 추적 기법을 제안한다. 이는 사용자 요구사항과 산출물간의 추적 링크를 생성하기 위한 중간 매개체로 휘처 개념을 적용하였고, 식별된 휘처들의 상세화 정도를 추정하기 위하여 요구사항의 우선순위에 따른 가치 평가를 포함한다. 또한, 본 논문에서 제안한 휘처 기반의 요구사항 추적 기법을 아파트 단지 내 홈 서비스를 통합하는 유비쿼터스 플랫폼에 적용한 사례의 결과를 기술한다.

  • PDF