• Title/Summary/Keyword: Interleukin-I

Search Result 721, Processing Time 0.025 seconds

Inhibitory Effect of a Sesquiterpene from Artemisia iwayomogi on Expression of Inducible Nitric Oxide Synthase by Suppression of I-κBα Degradation in LPS-stimulated RAW 264.7 Cells

  • Kim, Na Yeon;Koh, Hye Jin;Li, Hua;Lee, Hwa Jin;Ryu, Jae-Ha
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.92-96
    • /
    • 2017
  • A sesquiterpene was purified from Artemisia iwayomogi methanolic extract during the course of searching anti-inflammatory principle from medicinal plants. A sesquiterpene identified as armefolin inhibited the production of nitric oxide (NO) and attenuated inducible nitric oxide synthase (iNOS) protein level in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Armefolin also down-regulated mRNA expressions of iNOS and pro-inflammatory cytokines, interleukin-$1{\beta}$ and interleukin-6 in LPS-activated macrophages. Moreover, armefolin suppressed the degradation of inhibitory-${\kappa}B{\alpha}$ (I-${\kappa}B{\alpha}$) in LPS-activated macrophages. These data suggest that armefolin from A. iwayomogi can suppress the LPS-induced production of NO and the expression of iNOS gene through inhibiting the degradation of I-${\kappa}B{\alpha}$. Taken together, armefolin from A. iwayomogi might be a candidate as promising anti-inflammatory agent.

Curcumin suppresses the production of interleukin-6 in Prevotella intermedia lipopolysaccharide-activated RAW 264.7 cells

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Purpose: Curcumin is known to exert numerous biological effects including anti-inflammatory activity. In this study, we investigated the effects of curcumin on the production of interleukin-6 (IL-6) by murine macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory periodontal disease, and sought to determine the underlying mechanisms of action. Methods: LPS was prepared from lyophilized P. intermedia ATCC 25611 cells by the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time polymerase chain reaction to detect IL-6 mRNA expression. $I{\kappa}B-{\alpha}$ degradation, nuclear translocation of NF-${\kappa}B$ subunits, and STAT1 phosphorylation were characterized via immunoblotting. DNA-binding of NF-${\kappa}B$ was also analyzed. Results: Curcumin strongly suppressed the production of IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW 264.7 cells. Curcumin did not inhibit the degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS. Curcumin blocked NF-${\kappa}B$ signaling through the inhibition of nuclear translocation of NF-${\kappa}B$ p50 subunit. Curcumin also attenuated DNA binding activity of p50 and p65 subunits and suppressed STAT1 phosphorylation. Conclusions: Although further study is required to explore the detailed mechanism of action, curcumin may contribute to blockade of the host-destructive processes mediated by IL-6 and appears to have potential therapeutic values in the treatment of inflammatory periodontal disease.

Studies on Anti-inflammatory Effects of Yangdan-tang Extracts (양단탕 추출물의 항염증 효과에 대한 연구)

  • Choi, Su Ryeon;Hwang, Hyung Seo;Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.5
    • /
    • pp.238-244
    • /
    • 2020
  • Yangdan-tang (YD) is recorded as a treatment to treat exterior-related fever illness in the Korean medicine. In this study, we examined the anti-inflammatory effects of YD, using YD water extract and lipopolysaccharide (LPS)-induced RAW 264.7 cells. First of all, we measured the amount of nitric oxide (NO) and prostaglandin E2 (PGE2), the products of inflammatory metabolism. Also, we measured enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 1 alpha (IL-1α), and interleukin 1 beta (IL-1β). YD suppressed the production of NO and PGE2 in a dose dependent manner and reduced the amount of protein and the mRNA expression of iNOS and COX-2. Also, YD reduced the mRNA expression of TNF-α, IL-6, IL-1α and IL-1β. In conclusion, YD decreased production of LPS-induced inflammatory factor, which could be a clinical basic subject for inflammatory diseases.

Studies on Anti-inflammatory Effects of Mahwanghangingamchosukgo-tang Extracts (마황행인감초석고탕 추출물의 항염증 효과에 대한 연구)

  • Park, Jung Eun;Hwang, Hyung Seo;Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.319-325
    • /
    • 2020
  • Mahwanghangingamchosukgo-tang (MH) is recorded as a treatment to treat exterior-related respiratory diseases in the Korean medicine. In this study, we examined the anti-inflammatory effects of MH, using MH water extract and lipopolysaccharide (LPS)-induced RAW 264.7 cells. First of all, we measured the amount of nitric oxide (NO) and prostaglandin E2 (PGE2), the products of inflammatory metabolism. Also, we measured enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as cytokines such as interleukin 6 (IL-6), interleukin 1 alpha (IL-1α), and interleukin 1 beta (IL-1β). MH suppressed the production of NO and PGE2 in a dose dependent manner and reduced the amount of protein and the mRNA expression of iNOS and COX-2. Also, MH reduced the mRNA expression of IL-6, IL-1α and IL-1β. In conclusion, MH decreased production of LPS-induced inflammatory factor, which could be a clinical basic subject for inflammatory diseases.

Protective Effect of Decursinol on Mouse Models of Sepsis: Enhancement of Interleukin-10

  • Jung, Jun-Sub;Yan, Ji-Jing;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.79-81
    • /
    • 2008
  • The effects of decursinol on various models of sepsis were investigated. Intra-peritoneal pretreatment of mice with various doses of decursinol ($1{\sim}100$ mg/kg) effectively suppressed lethality induced in three mouse models of experimental sepsis, i.e., lipopolysaccharide (LPS)/D-galactosamine (GalN), high-dose LPS (20 mg/kg), and cecal ligation and puncture (CLP). Intra-peritoneal pretreatment of mice with decursinol (50 mg/kg) markedly enhanced the LPS/GalN -induced increase of plasma interleukin-10 (IL-10) levels, without affecting plasma TNF-${\alpha}$, IL-6 and IL-12 levels. These results suggest that decursinol could be effective for prevention or treatment of sepsis.

In vitro Immunomodulating Effects of PALMIWON (팔미원의 in vitro 면역조절 작용)

  • Lee, Ihn-Soon;Rhee, In-Ja
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.684-689
    • /
    • 1996
  • PALMIWON is composed of 8 oriental herbs which has been known to show some pharmacological effects in kidney, blood vessels and immune systems, and used for the treatment of kid ney disease, hypertension, nervous disease and diabetic mellitus in the Orient for a long time. Based on our previous report that PALMIWON showed different effects on immune cells and ${\beta}$-cells, the immunoreactivity of ICSA (Islet Cell Surface Antibody) with ${\beta}$-cell (RINm5F) and the cell proliferation and function of interleukin-1${\beta}$ damaged ${\beta}$-cells in the presence of PALMIWON were examined. It was observed that PALMIWON significantly inhibited the immunoreactivity of ICSA with ${\beta}$-cell, and markedly increased cell proliferation and insulin release of interleukin-1${\beta}$ damaged ${\beta}$-cells.

  • PDF

Anti-oxidation and Anti-inflammatory Effect of Asiasari Radix in RAW 264.7 Cells (세신(細辛) 주정(酒錠) 추출물(抽出物)이 LPS로 유발된 RAW 264.7 Cell의 염증 및 항산화 반응에 미치는 영향)

  • Lee, Yu-Chen;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.3
    • /
    • pp.99-110
    • /
    • 2014
  • Objectives The purpose of this study was to investigate the Anti-oxidation and anti-inflammatory effects of ethanol extract from asiasari radix (AR) on lipopolysaccharide (LPS)-induced in RAW 264.7 Cells Methods Anti-oxidative effects of AR were measured by scavenging activities of 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and production of reactive oxygen species (ROS) in RAW 264.7 cells. Anti-inflammatory effects of AR were measured by mediators including nitric oxide(NO), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), tumor necosis factors-${\alpha}$ (TNF-${\alpha}$) and iNOS, IL-$1{\beta}$, IL-6, TNF-${\alpha}$ mRNA expression in RAW 264.7 cells. Results Total phenolic content was expressed $28.77{\pm}1.67$. DPPH radical Scavenging was increased depend on AR ethanol extract. ABAT radical Scavenging was increased depend on AR ethanol extract. Production of ROS was significantly decreased by AR ethanol extract on concentration of 100 (${\mu}g/ml$). Production of NO was significantly decreased by AR ethanol extract on concentration of $100({\mu}g/ml)$. Production of IL-$1{\beta}$, interleukin-6 and TNF-${\alpha}$ were increased depend on AR ethanol extract. And Production of interleukin-6, TNF-${\alpha}$ were significantly decreased AR ethanol extract. iNOS, IL-$1{\beta}$, IL-6, TNF-${\alpha}$ mRNA expression of RAW 264.7 cells was increased depend on AR ethanol extract. Conclusions According to this study, AR ethanol extract has anti-oxidative and anti-inflammatoy effects.

Suppression of nitric oxide and interleukin-6 production by methanol extract of Sophorae Flos in macrophage cells (괴화 추출물이 대식세포에서의 nitric oxide와 interleukin-6의 생성에 미치는 영향)

  • Lee, Ji-Eun;Lee, Ju-Youn;Choi, Jeom-Il;Kim, Chong-Kwan;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.9-19
    • /
    • 2005
  • Both nitric oxide (NO) and interleukin-6 (IL-6) have been thought to have a role in the pathogenesis of inflammatory periodontal disease as it does in other inflammatory diseases, and the inhibitors of NO and IL-6 production have been considered as potential anti-inflammatory agents. In this study, we evaluated methanol extract of Sophorae Flos for inhibition of NO and IL-6 production in Prevotella intermedia LPS-induced mouse macrophages RAW264.7 cells. Dried Sopharae Flos was sliced, and extracted with 100% methanol. LPS from p. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. NO production was assayed by measuring the accumulation of nitrite in culture supematants and IL-6 was measured using mouse IL-6 ELISA kit. Western blot analysis of iNOS and analysis of reverse transcription (RT)-PCR products were carried out. The methanol extract of Sophorae Flos concentration-dependently reduced the production of NO and the expression of iNOS protein and mRNA in RAw264.7 cells treated with P. intermedia LPS. Sophorae Flos also suppressed IL-6 production and the expression of IL-6 mRNA in RAw264.7 cells stimulated by P. intermedia LPS. The inhibition of NO and IL-6 production by Sophorae Flos may be useful in the therapy of inflammatory diseases such as periodontitis. This hypothesis, however, remains to be tested.

Anti-inflammatory effect of Distylium racemosum leaf biorenovate extract in LPS-stimulated RAW 264.7 macrophages cells (LPS로 유도된 RAW 264.7 세포에 대한 조록나무 잎 Biorenovation 추출물의 항염증 활성)

  • Hong, Hyehyun;Lee, Kyung-Mi;Park, Taejin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.375-382
    • /
    • 2021
  • Biorenovation is a microbial enzyme-based structural modification of component compounds in natural products and synthetic compounds including plant extracts with the potential benefits of improved biological activities compared with its reaction substrates. In this study, we investigated the anti-inflammatory activity of Distylium racemosum leaf extract and D. racemosum leaf biorenovation extract (DLB). As a result, DLB inhibited nitric oxide, prostaglandin E2, and inflammatory cytokines including tumor necrosis factor-α, interleukin-6, interleukin-1β at non-toxic concentrations. In addition, DLB significantly inhibited inducible nitric oxide synthase and cyclooxygenase-2 on LPS-treated RAW 264.7 macrophages. Based on these results, we suggest that the DLB could be used as a potent anti-inflammatory agents. It also suggests that the application of biological evolution has potential usefulness to increase the practical value of natural products.

Anti-inflammatory Effect of Scopoletin in RAW264.7 Macrophages (대식 세포인 Raw264.7 cell에서 scopoletin의 항염증 효과)

  • Lee, Su-Gyeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1377-1383
    • /
    • 2015
  • Scopoletin is a component of several plant such as Erycibe obtusifolia, Aster tataricus, Foeniculum vulgare and Brunfelsia grandiflora. It was reported to have anti-angiogenesis and anti-allergy effects. In this study, the anti-inflammatory effect of scopoletin was investigated in Raw264.7 cells, mouse macrophages. The effects of scopoletin on phagocytosis and nitric oxide (NO) production were investigated in lipopolysaccharide (LPS)-induced inflammatory responses. It was observed that scopoletin exerted inhibitory effects on both phagocytosis and NO production. In addition, scopoletin decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) which were related to NO and prostaglandin E2 (PGE2) production. In particular, the expression of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression levels of IL-1β, IL-6 were remarkably decreased by treatment with scopoletin. Furthermore, the content of TNFα produced by macrophage was decreased in the presence of scopoletin at 8 hr. These results indicate that the anti-inflammatory effect of scopoletin could exert by inhibiting the expression of pro-inflammatory cytokines in Raw264.7 cells stimulated with LPS. The above results suggest scopoletin could be a new remedial agent for anti-inflammation through inhibition of iNOS, COX-2, IL-1β, IL-6 and TNF-α expressions as well as supression of phagocytosis and NO production.