DOI QR코드

DOI QR Code

Inhibitory Effect of a Sesquiterpene from Artemisia iwayomogi on Expression of Inducible Nitric Oxide Synthase by Suppression of I-κBα Degradation in LPS-stimulated RAW 264.7 Cells

  • Kim, Na Yeon (College of Pharmacy, Sookmyung Women's University) ;
  • Koh, Hye Jin (College of Pharmacy, Sookmyung Women's University) ;
  • Li, Hua (College of Pharmacy, Sookmyung Women's University) ;
  • Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University) ;
  • Ryu, Jae-Ha (College of Pharmacy, Sookmyung Women's University)
  • Received : 2016.12.29
  • Accepted : 2017.01.30
  • Published : 2017.06.30

Abstract

A sesquiterpene was purified from Artemisia iwayomogi methanolic extract during the course of searching anti-inflammatory principle from medicinal plants. A sesquiterpene identified as armefolin inhibited the production of nitric oxide (NO) and attenuated inducible nitric oxide synthase (iNOS) protein level in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Armefolin also down-regulated mRNA expressions of iNOS and pro-inflammatory cytokines, interleukin-$1{\beta}$ and interleukin-6 in LPS-activated macrophages. Moreover, armefolin suppressed the degradation of inhibitory-${\kappa}B{\alpha}$ (I-${\kappa}B{\alpha}$) in LPS-activated macrophages. These data suggest that armefolin from A. iwayomogi can suppress the LPS-induced production of NO and the expression of iNOS gene through inhibiting the degradation of I-${\kappa}B{\alpha}$. Taken together, armefolin from A. iwayomogi might be a candidate as promising anti-inflammatory agent.

Keywords

References

  1. Kim, J. K. Illustrated Natural Drugs Encyclopedia; Namsandang publisher: Seoul, 1989, p 79.
  2. Yan, X. T.; Ding, Y.; Lee, S. H.; Li, W.; Sun, Y. N.; Yang, S. Y.; Jang, H. D.; Kim, Y. H. Nat. Prod. Sci. 2014, 20, 176-181.
  3. Ha, H.; Lee, H.; Seo, C. S.; Lim, H. S.; Lee, M. Y.; Lee, J. K.; Shin, H. Evid. Based Complement. Alternat. Med. 2014, 2014, 673286.
  4. Wang, J. H.; Choi, M. K.; Shin, J. W.; Hwang, S. Y.; Son, C. G. J. Ethnopharmacol. 2012, 140, 179-185. https://doi.org/10.1016/j.jep.2012.01.007
  5. Yu, H. H.; Kim, Y. H.; Kil, B. S.; Kim, K. J.; Jeong, S. I.; You, Y. O. Planta Med. 2003, 69, 1159-1162. https://doi.org/10.1055/s-2003-818011
  6. Kim, A. R.; Zou, Y. N.; Park, T. H.; Shim, K. H.; Kim, M. S.; Kim, N. D.; Kim, J. D.; Bae, S. J.; Choi, J. S.; Chung, H. Y. Phytother. Res. 2004, 18, 1-7. https://doi.org/10.1002/ptr.1358
  7. Ahn H.; Kim J. Y.; Lee H. J.; Kim Y. K.; Ryu J. H. Arch. Pharm. Res. 2003, 26, 301-305. https://doi.org/10.1007/BF02976959
  8. Nathan, C.; Xie, Q. W. J. Biol. Chem. 1994, 269, 13725-13728.
  9. Thomsen, L. L.; Miles, D. W. Cancer Metastasis Rev. 1998, 17, 107-118. https://doi.org/10.1023/A:1005912906436
  10. Weinberg, J. B.; Fermor, B.; Guilak, F. Subcell. Biochem. 2007, 42, 31-62.
  11. Mittal, R.; Gonzalez-Gomez, I.; Goth, K. A.; Prasadarao, N. V. Am. J. Pathol. 2010, 176, 1292-1305. https://doi.org/10.2353/ajpath.2010.090851
  12. Kapur, S.; Picard, F.; Perreault, M.; Deshaies, Y.; Marette, A. Int. J. Obes. Relat. Metab. Disord. 2000, 24, S36-S40.
  13. Förstermann, U.; Schmidt, H. H.; Pollock, J. S.; Sheng, H.; Mitchell, J. A.; Warner, T. D.; Nakane, M.; Murad, F. Biochem. Pharmacol. 1991, 42, 1849-1857. https://doi.org/10.1016/0006-2952(91)90581-O
  14. Forstermann, U.; Pollock, J. S.; Tracey, W. R.; Nakane, M. Methods Enzymol. 1994, 233, 258-264.
  15. Hiraku, Y.; Kawanishi, S.; Ichinose, T.; Murata, M. Ann. N. Y. Acad. Sci. 2010, 1203, 15-22. https://doi.org/10.1111/j.1749-6632.2010.05602.x
  16. Hiraku, Y.; Kawanishi, S. Methods Mol. Biol. 2009, 512, 3-13.
  17. Mata, R.; Delgado, G.; de Vivar, A. R. Phytochemistry 1984, 23, 1665-1668. https://doi.org/10.1016/S0031-9422(00)83464-0
  18. Gasparini, C.; Feldmann, M. Curr. Pharm. Des. 2012, 18, 5735-5745. https://doi.org/10.2174/138161212803530763
  19. Kanarek, N.; Ben-Neriah, Y. Immunol. Rev. 2012, 246, 77-94. https://doi.org/10.1111/j.1600-065X.2012.01098.x
  20. Valera, F. C.; Umezawa, K.; Brassesco, M. S.; Castro-Gamero, A. M.; Queiroz, R. G. D. P.; Scrideli, C. A.; Tone, L. G.; Anselmo-Lima, W. T. Cell. Physiol. Biochem. 2012, 30, 13-22. https://doi.org/10.1159/000339042
  21. Ganai, A. A.; Khan, A. A.; Malik, Z. A.; Farooqi, H. Toxicol. Appl. Pharmacol. 2015, 283, 139-146. https://doi.org/10.1016/j.taap.2015.01.012
  22. Kaminska, B. Biochim. Biophys. Acta 2005, 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  23. Kim, E. K.; Choi, E. J. Arch. Toxicol. 2015, 89, 867-882. https://doi.org/10.1007/s00204-015-1472-2

Cited by

  1. Antigastritis effects of Armillariella tabescens (Scop.) Sing. and the identification of its anti-inflammatory metabolites vol.70, pp.3, 2017, https://doi.org/10.1111/jphp.12871
  2. Lactones from the pericarps of Litsea japonica and their anti-inflammatory activities vol.28, pp.11, 2017, https://doi.org/10.1016/j.bmcl.2018.04.023