• Title/Summary/Keyword: Interleukin-7

Search Result 1,043, Processing Time 0.034 seconds

Anti-inflammatory effects of low-level laser in burn wound models in rats

  • Kim, Eun-Jeong;Kim, Se-Hun
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.170-175
    • /
    • 2017
  • Objective: The anti-inflammatory effects of low-level laser in burn wound model in rats were investigated. Design: Randomized controlled trial. Methods: The rats were assigned to three experimental groups. Group I received second-degree burn wounds; Group II received dressing film and low-level laser ($1.2J/cm^2$) treatment after a burn wound; Group III received dressing film and low-level laser ($2.3J/cm^2$) treatment after a burn wound. After inducing a deep second-degree burn wound, the wound was observed every day and the burn area diameter and retraction quantification at 1, 7, and 14 days were evaluated. Low-level laser was investigated on hematological parameters after 14 days. Effects of low-level laser on the inflammatory cytokines (tumor necrosis $factor-{\alpha}$ [$TNF-{\alpha}$] and interleukin-6 [IL-6]) concentrations in the serum were evaluated using immunosorbent assay kits. Results: Group III showed a significant difference in wound size on days 7 and 14 compared to Group I (p<0.05). Group II showed a significant difference in wound size on day 14 compared to Group I (p<0.05). For wound contraction percentage, both laser therapy treatment groups showed a significant difference compared with Group I (p<0.05). There was also a significant difference in wound contraction percentage in Group III compared to Group II (p<0.05). Compared with the model control group, decreased $TNF-{\alpha}$ and IL-6 levels in the serum was observed at 14 days after burn wound induction. Conclusions: The results of this study suggest that low-level laser therapy can assist in burn wound healing, which might be associated with decreased concentrations of $TNF-{\alpha}$ and IL-6 related proinflammatory cytokines.

Immunomodulatory Effect of Silybin on T Cell- and Macrophage-mediated Functions (T 세포 및 대식세포 기능에 대한 Silybin의 조절효과)

  • Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.270-276
    • /
    • 2007
  • Silybin is known to be a major active flavonoid component isolated from Silybum marianum, a hepatoprotective medicinal plant. In this study, we examined the immunomodulatory role of silybin on T cell and macrophage-mediated immune responses. To do this, the proliferation of splenic lymphocytes and CD8+ CTLL-2 cells under mitogenic stimulation with lipopolysaccharide (LPS), concanavalin (Con) A and interleukin (IL)-2 and the production of $TNF-{\alpha}$ and NO from LPS- and $IFN-{\gamma}$-activated macrophages was evaluated under silybin treatment. The mitogenic proliferation of splenic lymphocytes induced by LPS and Con A was strongly diminished by silybin in a dose-dependent manner. Moreover, the proliferation of CD8+ CTLL-2 cells was also negatively modulated by the compound. In contrast, silybin did not strongly suppress the proliferation of normal splenocytes and T cell line Sup-T1 cells, indicating that the inhibitory effect of silybin may be due to blocking only mitogenic responses of splenic lymphocytes. In addition, silybin inhibited $TNF-{\alpha}$ production in LPS-stimulated RAW264.7 cells. Effect of silybin however was distinct, according to NO-inducing stimuli. Thus, silybin only blocked NO production induced by $IFN-{\gamma}$ but not LPS and the inhibition was increased when PMA was co-treated with $IFN-{\gamma}$. Unlike NO inhibition, however, this compound protected the cytotoxic damage of RAW264.7 cells induced by both LPS and $IFN-{\gamma}$. Therefore, our data suggest that silybin may participate in host immune responses mediated by T cells and macrophages via regulating mitogenic proliferation, and the production of $TNF-{\alpha}$ and NO, depending on cellular stimuli.

복제 소 태반과 IVF 소 태반의 protein pattern 분석

  • 김홍래;강재구;윤종택;성한우;조민래;박창식;진동일
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • 체세포 핵이식에 의한 복제기술은 매우 낮은 성공률 나타내고 있어 실용화에 지장을 초래하고 있다. 이것은 후생적인 유전현상인 reprogramming이 불완전하게 이루어지기 때문인 것으로 추측되어지고 있다(Reik et al., Theriogenology 2003, 59: 21-32; Han et al, Theriogenology 2003, 59: 33-44). 체세포 핵이식 후에 태아사망의 원인이 태반의 비정상적인 기능과 관계가 있는 것으로 추정되는데 복제시 태아사망의 원인을 찾기 위해 본 연구를 시행하였다. 한우에서 체세포 복제 후 임신 말기에 태아가 사망한 태반조직 3개와 IVF 수정란 이식 후 동일한 시기에 제왕절개술을 실시한 태반조직 2개를 실험에 이용하였다. 태반 protein을 Two-Dimensional electrophoresis와 Mass spectrometer를 이용하여 분석 비교하였다. IPG-system을 이용하여 pH 4~7, pH 6~9에서 1차 전기영동을 한 후, 8~l6%의 SDS-PAGE gel에 2차 전기영동을 실시하였고 G-250 Coomassie로 염색하였다. gel 이미지는 Malanie III program을 이용하여 분석하였다. 전체 gel에서 약 1800개의 구분 가능한 protein spot이 나타났다. pH 4~7 범위에서 양적으로 차이나는 것 15개 중 복제한우 태반에서 증가되는 protein spot 5개와 감소하는 protein spot 10개를 골라 protein identification을 실시하였다. MALDI-TOF-MS를 이용하여 동정한 결과 phosphatidylinositol transfer protein-$\alpha$와 interleukin-18 등의 protein이 복제태반에서 발현이 증가되었고, 복제한우에서 발현이 감소되는 것으로는 vimentin, Rho-GDI-$\beta$, TRAST $\beta$-chain, ovarian sterol carrier protein 2, triosephosphate isomerase, tropemyosin beta chain, Aldose reductase 등으로 나타났다. 이러한 protein들은 inositol 지질 신호전달과 면역시스템, 세포분열, 산소 운반, steroidogenic 세포에서의 콜레스테롤 이동, 촉매 작용, 대사 작용 등에 중요한 역할을 하는 것으로 알려져 체세포 복제에 의한 태아사망 원인은 태반에서 이러한 protein들의 비정상적인 발현에 기인된 것으로 추정된다.

  • PDF

Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포에 대한 참치심장 물 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Cho, Young-Je;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.326-331
    • /
    • 2015
  • The anti-inflammatory effect of tuna heart water extract (THWE) was investigated using lipopolysaccharide-induced inflammatory response in this study. Anti-inflammatory effect was detected by the cell proliferation and the production levels of nitric oxide, pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-$1{\beta}$, and tumor necrosis factor-alpha. As a result, there were no cytotoxic effects on proliferation of macrophages treated with THWE compared to the control. The production of pro-inflammatory cytokines was remarkably suppressed compared with that of the LPS only group. These results suggest that THWE exerts the anti-inflammatory property by inhibiting production of inflammatory factors and may be a potential material for anti-inflammatory therapy.

Immunostimulating Activites of Polysaccharide Fractions isolated from Aster scaber Thunb. (참취에서 분리한 다당의 면역자극 활성)

  • Sung, Su-Kyung;Rhee, Young Kyung;Cho, Chang-Won;Kim, Eun Young;Kang, Dong-Zhou;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.821-828
    • /
    • 2015
  • ASW0 is a polysaccharide derived from the perennial herb Aster scaber Thunberg. We isolated ASW0, a fraction of crude polysaccharide, by means of ethanol precipitation and dialysis after hot water extraction to investigate its physicochemical properties and immunostimulatory effects. ASW0 contains neutral sugar (45.7%), acidic sugar (51.6%), protein (2.3%), and 2-keto-3-deoxy-D-manno-octonate (KDO) (0.4%). The neutral sugar in ASW0 (in mole percentage) was mainly composed of arabinose (34.5 mol%), glucose (31.1 mol%), galactose (14.9 mol%), and rhamnose (8.1 mol%), which are characteristic of pectic polysaccharides. ASW0 also contained small amounts of xylose, mannose, and fucose. The anti-complementary activity of ASW-0 was similar to that of polysaccharide K (used as positive control). ASW0 exhibited no cytotoxicity in RAW 264.7 macrophages and dramatically increased nitric oxide (NO) production in a dose dependent manner ($0.3{\sim}30{\mu}g/mL$). Also, macrophages stimulated with ASW0 showed enhanced production of immunostimulatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha ($TNF-{\alpha}$) in a dose dependent manner. These results suggest that the ASW0 have a potent immunostimulatory effect and can be used as a natural immune health ingredient.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Inhibitory Effects of Panduratin A on Periodontitis-Induced Inflammation and Osteoclastogenesis through Inhibition of MAPK Pathways In Vitro

  • Kim, Haebom;Kim, Mi-Bo;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • Periodontitis is an inflammatory disease caused by microbial lipopolysaccharide (LPS), destroying gingival tissues and alveolar bone in the periodontium. In the present study, we evaluated the anti-inflammatory and anti-osteoclastic effects of panduratin A, a chalcone compound isolated from Boesenbergia pandurata, in human gingival fibroblast-1 (HGF-1) and RAW 264.7 cells. Treatment of panduratin A to LPS-stimulated HGF-1 significantly reduced the expression of interleukin-$1{\beta}$ and nuclear factor-kappa B (NF-${\kappa}B$), subsequently leading to the inhibition of matrix metalloproteinase-2 (MMP-2) and MMP-8 compared with that in the LPS control ($^{**}p$ < 0.01). These anti-inflammatory responses were mediated by suppressing the mitogen-activated protein kinase (MAPK) signaling and activator protein-1 complex formation pathways. Moreover, receptor activator of NF-${\kappa}B$ ligand (RANKL)-stimulated RAW 264.7 cells treated with panduratin A showed significant inhibition of osteoclastic transcription factors such as nuclear factor of activated T-cells c1 and c-Fos as well as osteoclastic enzymes such as tartrate-resistant acid phosphatase and cathepsin K compared with those in the RANKL control ($^{**}p$ < 0.01). Similar to HGF-1, panduratin A suppressed osteoclastogenesis by controlling MAPK signaling pathways. Taken together, these results suggest that panduratin A could be a potential candidate for development as a natural anti-periodontitis agent.

The Aqueous Extract of Radio-Resistant Deinococcus actinosclerus BM2T Suppresses Lipopolysaccharide-Mediated Inflammation in RAW264.7 Cells

  • Kim, Myung Kyum;Jang, Seon-A;Namkoong, Seung;Lee, Jin Woo;Park, Yuna;Kim, Sung Hyeok;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.583-590
    • /
    • 2020
  • Deinococcus actinosclerus BM2T (GenBank: KT448814) is a radio-resistant bacterium that is newly isolated from the soil of a rocky hillside in Seoul. As an extremophile, D. actinosclerus BM2T may possess anti-inflammatory properties that may be beneficial to human health. In this study, we evaluated the anti-inflammatory effects of BM2U, an aqueous extract of D. actinosclerus BM2T, on lipopolysaccharide (LPS)-mediated inflammatory responses in RAW264.7 macrophage cells. BM2U showed antioxidant capacity, as determined by the DPPH radical scavenging (IC50 = 349.3 ㎍/ml) and ORAC (IC50 = 50.24 ㎍/ml) assays. At 20 ㎍/ml, BM2U induced a significant increase in heme oxygenase-1 (HO-1) expression (p < 0.05). BM2U treatment (0.2-20 ㎍/ml) significantly suppressed LPS-induced increase in the mRNA expression of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 (p < 0.05). BM2U treatment also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. BM2U treatment also inhibited the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs): JNK, ERK, and p-38 (p < 0.05). Collectively, BM2U exhibited anti-inflammatory potential that can be exploited in attenuating inflammatory responses.

In Vitro Immunopotentiating Activities of Cellular Fractions of Lactic Acid Bacteria Isolated from Kimchi and Bifidobacteria

  • Hur, Haeng-Jeon;Lee, Ki-Won;Kim, Hae-Yeong;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.661-666
    • /
    • 2006
  • The present study represents the investigation of in vitro immunopotentiating activities of cellular fractions of major lactic acid bacteria found in kimchi (KLAB) and bifidobacteria. The macrophage cells, RAW264.7, were stimulated with heat-killed whole-cell, cell-wall, and cytoplasmic fractions of four strains of KLAB (Leuconostoc mesenteroides, Leuconostoc citreum, Lactobacillus plantarum, and Lactobacillus sake) and two strains of bifidobacteria (Bifidobacterium longum and Bifidobacterium lactis) each, and then the production of nitric oxide (NO) and cytokines including tumor necrosis $factor-\alpha\;(TNF-\alpha)$ and interleukin-6 (IL-6) was measured by Griess and ELISA assays, respectively. Heat-killed wholecell and cell-wall fractions-but not the cytoplasmic fraction-from all strains of KLAB significantly increased the production of NO in RAW264.7 cells, and all fractions from bifidobacteria exerted similar effects. In the production of $TNF-\alpha$, heat-killed whole-cell and cell-wall fractions of L. plantarum showed the strongest effect, followed by L. sake and B. lactis, whereas other KLAB fractions did not exert any effect. In the production of IL-6, only whole-cell and cell-wall fractions of L. plantarum were effective. These results, taken together, indicate that L. plantarum might playa critical role in the immunopotentiating activities of kimchi.

Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice

  • Park, Soyoung;Lim, Yeseo;Shin, Sunhye;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.352-358
    • /
    • 2013
  • Korean pine nut oil (PNO) has been reported to have favorable effects on lipid metabolism and appetite control. We investigated whether PNO consumption could influence weight gain, and whether the PNO-induced effect would result in an improvement of immune function in high-fat diet (HFD)-induced obese mice. C57BL/6 mice were fed control diets with 10% energy fat from either PNO or soybean oil (SBO), or HFDs with 45% energy fat from 10% PNO or SBO and 35% lard, 20% PNO or SBO and 25% lard, or 30% PNO or SBO and 15% lard for 12 weeks. The proliferative responses of splenocytes upon stimulation with concanavalin A (Con A) or lipopolysaccharide (LPS), Con A-stimulated production of interleukin (IL)-2 and interferon (IFN)-${\gamma}$, and LPS-stimulated production of IL-6, IL-$1{\beta}$, and prostaglandin $E_2$ ($PGE_2$) by splenocytes were determined. Consumption of HFDs containing PNO resulted in significantly less weight gain (17% less, P < 0.001), and lower weight gain was mainly due to less white adipose tissue (18% less, P = 0.001). The reduction in weight gain did not result in the overall enhancement in splenocyte proliferation. Overall, PNO consumption resulted in a higher production of IL-$1{\beta}$ (P = 0.04). Replacement of SBO with PNO had no effect on the production of IL-2, IFN-${\gamma}$, IL-6, or $PGE_2$ in mice fed with either the control diets or HFDs. In conclusion, consumption of PNO reduced weight gain in mice fed with HFD, but this effect did not result in the overall improvement in immune responses.