• Title/Summary/Keyword: Interleukin-7

Search Result 1,043, Processing Time 0.034 seconds

Mouse Granulocyte-marcrophage Colony-stimulating Factor Enhances Viability of Porcine Embryos in Defined Culture Conditions

  • S. H Jun;X. S Cui;Kim, N. H
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.71-71
    • /
    • 2003
  • Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine that has been implicated in the regulation of pre-implantation embryo development across several species. The aim of this study was to determine the effects of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) on development of porcine parthenotes and nuclear transferred embryos, and on their expression of implantation-related genes. In the presence of bovine serum albumin, mGM-CSF did not increase the percentage of oocytes that developed to the blastocyst stage and at day 7 did not increase oocyte cell number. Addition of 10 mM GM-CSF to protein-free culture medium significantly increased the compaction and blastocoel formation of 1- to 2-cell parthenotes and cloned embryos developing in vitro. However, cell number was not increased when they were cultured in the presence of GM-CSF. Semi-quantitative reverse transcripts polymerase chain reaction (RT-PCR) revealed that mGM-CSF enhances mRNA expression of the leukemia inhibitory factor receptor, but does not influence interleukin-6 or sodium/glucose co-transporter protein gene expression in blastocyst stage parthenotes. These results suggest that mGM-CSF may enhance viability of porcine embryos developing in vitro in a defined culture medium.

  • PDF

Anti-inflammatory, Anti-oxidative and Anti-bacterial Activities of the Constituents Extracted from Leaves of Talipariti hamabo

  • Xu Hui Liang;Jung Eun Kim;Nam Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.145-149
    • /
    • 2023
  • Talipariti hamabo is a plant growing around salt marshes in the Lava Coast region of Jeju Island, Korea. In this study, the extract of T. hamabo leaves was investigated for the anti-inflammatory, anti-oxidative and anti-bacterial activities and their active constituents were identified. In the anti-inflammatory tests using lipopolysaccharide-stimulated RAW264.7 cells, the ethyl acetate (EtOAc) fraction inhibited the nitric oxide production without causing cell toxicity. Moreover, the EtOAc fraction reduced pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) as well as prostaglandin E2. In the anti-oxidative studies with DPPH and ABTS+ radicals, potent scavenging activities were observed in the EtOAc and n-butanol fractions. Upon the anti-bacterial tests using Staphylococcus epidermidis, EtOAc and n-butanol fractions exhibited good activities. Through the phytochemical studies on EtOAc fraction, three components were isolated by repeated column chromatography; oleic acid (1), p-hydroxyphenethyl-trans-ferulate (2), nicotiflorine (3). Based on these results, the extract of T. hamabo leaves can be developed as natural resources for cosmetic applications.

Potential Anti-Allergy and Immunomodulatory Properties of Lactococcus lactis LB 1022 Observed In Vitro and in an Atopic Dermatitis Mouse Model

  • Jihye Baek;Jong-Hwa Kim;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.823-830
    • /
    • 2023
  • Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-β (TGF-β), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.

In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis

  • A-yeong Jang;JeongUn Choi;Weerawan Rod-in;Ki Young Choi;Dae-Hee Lee;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.940-948
    • /
    • 2024
  • Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1β, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon- gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.

New Radiolytic Cyclization Products, Phlorocyclin and Isophlorocyclin Exhibit Anti-inflammatory Effects in LPS-stimulated Macrophages

  • Tae Hoon Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • Phlorocyclin (PC) and isophorocyclin (IPC) are rare benzofuran derivaitves obtained from the representive dihydrochalcone glucoside, phloridzin (PZ) and are a type of neolignan backbone with a potential anti-glycative agents. However, research related to the enhancement of biological functionallites to inflammation of the newly converted products is very limited. This research was directed with the purpose of discovery more effective anti-inflammatory agents in macrophages of newly radiolysis products PC and IPC. The anti-inflammatory capacities of the characterized products in RAW 264.7 and DH82 macrophages treated with lipopolysaccharide (LPS) to stimulate an inflammation response were examined. The pro-inflammatory factors such as prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10, without cytotoxicity in LPS-stimulated macrophages, were significantly inhibited after treatment with PC and IPC, when compared to PZ. Moreover, PC and IPC decreased the appearance of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in macrophages. The cyclization products modified by radiolysis showed the greatest anti-inflammatory effects in macrophage cells, indicating PC and IPC are a potential candidate for use in anti-inflammatory agents.

Effect of Saururi Herba Seu Rhizoma on anti-inflammatory properties in RAW264.7 cell line and murine models of inflammation (삼백초(三白草)의 소염작용(消炎作用)에 대(對)한 실험적(實驗的) 연구(硏究))

  • Byun, Hyung-Kuk;Shin, Yong-Wan;Kim, Eui-Il;Kim, Su-Min;Lee, Jung-Eun;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.4
    • /
    • pp.54-71
    • /
    • 2005
  • Purpose : The purpose of this research was to investigate the effects of Saurui Herba Seu Rhizoma(SHSR) on Anti-inflammatory properties in Raw264.7 cell line and murine models of inflammation. Methods : To investigate the effects of Saurui Herba Seu Rhizoma(SHSR) on anti-inflammation, we study cytotoxicity effects of SHSR on Mouse Lung Fibroblast Cells and Peritoneal Macrophages, Inhibitory effects of SHSR on the nitric oxide (NO) release, the ROS production, and the interleukin-6 production. Results : The cytotoxicity of SHSR on mouse lung fibroblast Cells and Raw264.7 cell line was not observed. SHSR in RAW264.7 cell line inhibited $IL-1{\beta}$, IL-6 mRNA gene expression depending upon the concentrations of extract and inhibited IL-18 mRNA gene expression at 100 ${\mu}g/ml$ of extract. SHSR in RAW264.7 cell line inhibit COX-2 mRNA gene expression at 100, 10 ${\mu}g/ml$ of extract. SHSR in RAW264.7 cell line inhibited NOS-II mRNA gene expression depending upon the concentrations of extract. SHSR in RAW264.7 cell line didn't inhibit $TNF-{\alpha}$ mRNA gene expression. SHSR in RAW264.7 cell line decreased IL-6 production depending upon the concentrations of extract. SHSR in RAW264.7 cell line decreased $ITNF-{\alpha}$ production according to the concentrations of extract. SHSR in RAW264.7 cell line inhibited NO release specially SHSR 100, 10 ${\mu}g/ml$ concentrations of extract. SHSR inhibit ROS production depending upon the concentrations of extract. Conclusion : These results suggest that SHSR can be used treating a lot of women disease caused by inflammation.

  • PDF

Inhibitory effect of Koreinsis chinensis leaves extract on proinflammatory responses in lipopolysaccharide-induced Raw 264.7 cells (Lipopolysaccharide로 유도된 Raw 264.7 cell에서 잣 잎(Koreinsis chinensis L.) 추출물의 Pro-inflammatory 억제 효과)

  • Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • Hyaluronidase inhibitory activity as inflammatory factor of Koreinsis chinensis leaf ethanol extract was showed higher inhibitory activity than water extract. 29.5% inhibitory activity was shown at concentration of $200{\mu}g/mL$ phenolics. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations ($5-25{\mu}g/mL$) of Koreinsis chinensis leaf extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 3 times more NO than non-LPS treated cells. Moreover, the NO production in cells treated with Koreinsis chinensis leaf extract showed inhibitory effect in a concentration-dependent manner. Due to the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we determined the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. It was reduced by 40% with a Koreinsis chinensis leaf extract concentration of $25{\mu}g/mL$ and identified iNOS inhibition in dose-dependent manner. The prostaglandin $E_2$ production in cells treated with Koreinsis chinensis leaf extract was reduced by 26.2% at concentration of $25{\mu}g/mL$. The protein expression of cyclooxygenase-2 in LPS-treated Raw 264.7 cells was inhibited by 64% at $25{\mu}g/mL$ of Koreinsis chinensis leaf extract. Koreinsis chinensis leaf extract had a concentration-dependent inhibitory effect on the production of tumor necrosis factor-${\alpha}$ and interleukin-6 as pro-inflammatory cytokine in LPS-treated Raw 264.7 cells at $25{\mu}g/mL$ of Koreinsis chinensis leaf extract. Their levels were decreased by 61.7 and 62% respectively.

Glucosylation of Resveratrol Improves its Immunomodulating Activity and the Viability of Murine Macrophage RAW 264.7 Cells (당화된 레스베라트롤의 대식세포 RAW 264.7세포의 생존능력과 레스베라트롤의 면역제어 활성을 증가)

  • Pandey, Ramesh Prasad;Lee, Jisun;Park, Yong Il;Sohng, Jae Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Effects of resveratrol glucosylation on the immunomodulation properties of resveratrol and on the viability of macrophage cells have been studied by using murine macrophage RAW 264.7 cells. Nitric oxide (NO) and interleukin 6 (IL-6) expression in macrophages in vitro were studied after treatment with different concentrations of (E)-resveratrol, (E)-resveratrol 3-O-${\beta}$-${\small{D}}$-glucoside (R-3-G), or (E)-resveratrol 4'-O-${\beta}$-${\small{D}}$-glucoside (R-4'-G). In vitro viability of RAW 264.7 cells after treatment with the aforementioned three compounds was also studied. As demonstrated by macrophage cell viability assays, two different resveratrol monoglucosides, R-3-G and R-4'-G, exhibited 50-80% reduced cytotoxicity in comparison to (E)-resveratrol in A549 and HepG2 cells. Compared to the resveratrol aglycon, both glucosylated resveratrol derivatives positively modulated NO and IL-6 production in macrophages positively via transcriptionally up-regulating IL-6 and iNOS expression. Conjugation of a glucose moiety on resveratrol was found to enhance the immunomodulating activity of resveratrol and the viability of RAW 264.7 cells.

Anti-inflammatory Effects of Achyranthes japonica Nakai and Aralia continentalis Kitagawa Complex Fermented Extracts on LPS-stimulated RAW264.7 Macrophage (LPS로 자극된 RAW264.7 대식세포에서 우슬 및 땅두릅 복합 발효추출물의 항염증 효과)

  • Woo, Young Min;Jo, Eun Sol;Kim, Ok Ju;Lee, Young-Ho;Ahn, Mee Young;Lee, Dong-Geun;Lee, Sang-Hyeon;Ha, Jong-Myung;Kim, Andre
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.479-486
    • /
    • 2019
  • This study investigated the anti-inflammatory effects of mixed extracts of Achyranthes japonica Nakai (Aj) and Aralia continentalis Kitagawa (Ac) (ratios of 1 : 2, 1 : 3, 1 : 5, 2 : 1, 3 : 1 and 5 : 1) on RAW264.7 macrophages. Cell toxicity was determined using a cell counting kit (CCK) assay. We evaluated anti-inflammatory effects of the mixed extracts of Aj and Ac by measuring interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF){\alpha}$ using an enzyme-linked immunosorbent assay (ELISA) kit assay. The mixed extracts of Aj and Ac inhibited lipopolysaccharide (LPS)-induced $IL-1{\beta}$ and $TNF{\alpha}$ in LPS-stimulated macrophages. Comparing different ratios of the mixed extracts, the 2 : 1 ratio of Aj and Ac has much more potency and inhibited the production of $TNF{\alpha}$ in LPS-induced RAW264.7 cells. The results of the present study showed that the mixed extracts of Aj and Ac have potential anti-inflammatory effects on RAW264.7 macrophages. Therefore, these extracts may be used as a good source of functional foods for the protection against inflammatory diseases.

Inflammatory Effect of Light-Emitting Diodes Curing Light Irradiation on Raw264.7 Macrophage

  • Jeong, Moon-Jin;Kil, Ki-Sung;Lee, Myoung-Hwa;Lee, Seung-Yeon;Lee, Hye-Jin;Lim, Do-Seon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • Background: The light-emitting diode (LED) curing light used is presumed to be safe. However, the scientific basis for this is unclear, and the safety of LED curing light is still controversial. The purpose of this study was to investigate the effect of LED curing light irradiation according to the conditions applied for the polymerization of composite resins in dental clinic on the cell viability and inflammatory response in Raw264.7 macrophages and to confirm the stability of LED curing light. Methods: Cell viability and cell morphology of Raw264.7 macrophages treated with 100 ng/ml of lipopolysaccharide (LPS) or/and LED curing light with a wavelength of 440~490 nm for 20 seconds were confirmed by methylthiazolydiphenyl-tetrazolium bromide assay and microscopic observation. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was confirmed by NO assay and $PGE_2$ enzyme-linked immunosorbent assay kit. Expression of interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ in total RNA and protein was confirmed by reverse transcription polymerase chain reaction and Western blot analysis. Results: The LED curing light did not affect the viability and morphology of normal Raw264.7 cells but affected the cell viability and induced cytotoxicity in the inflammation-induced Raw264.7 cells by LPS. The irradiation of the LED curing light did not progress to the inflammatory state in the inflammation-induced Raw264.7 macrophage. However, LED curing light irradiation in normal Raw264.7 cells induced an increase in NO and $PGE_2$ production and mRNA and protein expression of $(IL)-1{\beta}$ and $(TNF)-{\alpha}$, indicating that it is possible to induce the inflammatory state. Conclusion: The irradiation of LED curing light in RAW264.7 macrophage may induce an excessive inflammatory reaction and damage oral tissues. Therefore, it is necessary to limit the long-term irradiation which is inappropriate when applying LED curing light in a dental clinic.