DOI QR코드

DOI QR Code

In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis

  • A-yeong Jang (Department of Marine Bio Food Science, Gangneung-Wonju National University) ;
  • JeongUn Choi (Department of Marine Bio Food Science, Gangneung-Wonju National University) ;
  • Weerawan Rod-in (Department of Marine Bio Food Science, Gangneung-Wonju National University) ;
  • Ki Young Choi (Department of Marine Bio Food Science, Gangneung-Wonju National University) ;
  • Dae-Hee Lee (Department of Marine Bio Food Science, Gangneung-Wonju National University) ;
  • Woo Jung Park (Department of Marine Bio Food Science, Gangneung-Wonju National University)
  • Received : 2023.12.05
  • Accepted : 2024.01.05
  • Published : 2024.04.28

Abstract

Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1β, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon- gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the "Regional Specialized Industry Development Pius Program (R&D, S3258709)" supervised by the Korea Technology and Information Promotion Agency for SMEs (TIPA). In addition, this research was supported by the University Emphasis Research Institute Support Program (No. 2018R1A61A03023584) funded by the National Research Foundation of Korea.

References

  1. Gallegos-Alcala P, Jimenez M, Cervantes-Garcia D, Salinas E. 2021. The keratinocyte as a crucial cell in the predisposition, onset, progression, therapy and study of the atopic dermatitis. Int. J. Mol. Sci. 22: 100661.
  2. Ng YT, Chew FT. 2020. A systematic review and meta-analysis of risk factors associated with atopic dermatitis in Asia. World Allergy Organ. J. 13: 100477.
  3. Nutten S. 2015. Atopic dermatitis: global epidemiology and risk factors. Ann. Nutr. Metab. 66: 8-16. https://doi.org/10.1159/000370220
  4. Chieosilapatham P, Kiatsurayanon C, Umehara Y, Trujillo-Paez JV, Peng G, Yue H, et al. 2021. Keratinocytes: innate immune cells in atopic dermatitis. Clin. Exp. Immunol. 204: 296-309. https://doi.org/10.1111/cei.13575
  5. Juranova J, Frankova J, Ulrichova J. 2017. The role of keratinocytes in inflammation. J. Appl. Biomed. 15: 169-179. https://doi.org/10.1016/j.jab.2017.05.003
  6. Bayazid AB, Jang YA. 2021. The role of andrographolide on skin inflammations and modulation of skin barrier functions in human keratinocyte. Biotechnol. Bioprocess Eng. 26: 804-813. https://doi.org/10.1007/s12257-020-0289-x
  7. Kim BE, Howell MD, Guttman E, Gilleaudeau PM, Cardinale IR, Boguniewicz M, et al. 2011. TNF-α downregulates filaggrin and loricrin through c-jun N-terminal kinase: role for TNF-α antagonists to improve skin barrier. J. Invest. Dermatol. 131: 1272-1279. https://doi.org/10.1038/jid.2011.24
  8. Agrawal R, Woodfolk JA. 2014. Skin barrier defects in atopic dermatitis. Curr. Allergy Asthma Rep. 14: 433.
  9. Choi EH, Yoon NY. 2014. Pathogenesis of atopic dermatitis. J. Korean Med. Assoc. 57: 218-225. https://doi.org/10.5124/jkma.2014.57.3.218
  10. Ibrahim IBM, Pidaparti R. 2019. Influence of pathogens and mechanical stimuli in inflammation. Bioengineering 6: 55.
  11. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2017. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9: 7204-7216. https://doi.org/10.18632/oncotarget.23208
  12. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  13. Cheon MS, Yoon T, Lee DY, Choi G, Moon BC, Lee AY, et al. 2009. Chrysanthemum indicum Linne extract inhibits the inflammatory response by suppressing NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages. J. Ethnopharmacol. 122: 473-477. https://doi.org/10.1016/j.jep.2009.01.034
  14. Lee MS, Kwon MS, Choi JW, Shin T, No HK, Choi JS, et al. 2012. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW264.7 murine macrophage cells. J. Agric. Food Chem. 60: 9120-9129. https://doi.org/10.1021/jf3022018
  15. Li M-Y, Sun L, Niu X-T, Chen X-M, Tian J-X, Kong Y-D, et al. 2019. Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-kB and MAPKs signaling pathways. Fish Shellfish Immunol. 86: 280-286. https://doi.org/10.1016/j.fsi.2018.11.011
  16. Wu GJ, Shiu SM, Hsieh MC, Tsai GJ. 2016. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll. 53: 16-23. https://doi.org/10.1016/j.foodhyd.2015.01.019
  17. Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. 2013. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int. J. Biol. Macromol. 59: 1-12. https://doi.org/10.1016/j.ijbiomac.2013.04.022
  18. Ciancia M, Quintana I, Vizcarguenaga MI, Kasulin L, de Dios A, Estevez JM, et al. 2007. Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. Int. J. Biol. Macromol. 41: 641-649. https://doi.org/10.1016/j.ijbiomac.2007.08.007
  19. Lee SA, Moon SM, Choi YH, Han SH, Park BR, Choi MS, et al. 2017. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed. Pharmacother. 93: 1055-1064. https://doi.org/10.1016/j.biopha.2017.07.026
  20. Lee J-B, Ohta Y, Hayashi K, Hayashi T. 2010. Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydr. Res. 345: 1452-1454. https://doi.org/10.1016/j.carres.2010.02.026
  21. Park HB, Hwang J, Zhang W, Go S, Kim J, Choi I, et al. 2020. Polysaccharide from Codium fragile induces anti-cancer immunity by activating natural killer cells. Mar. Drugs 18: 626.
  22. Kolsi RBA, Jardak N, Hajkacem F, Chaaben R, jribi I, Feki AE, et al. 2017. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int. J. Biol. Macromol. 102: 119-129. https://doi.org/10.1016/j.ijbiomac.2017.04.017
  23. Ohta Y, Lee JB, Hayashi K, Hayashi T. 2009. Isolation of sulfated galactan from Codium fragile and its antiviral effect. Biol. Pharm. Bull. 32: 892-898. https://doi.org/10.1248/bpb.32.892
  24. Kang CH, Choi YH, Park SY, Kim GY. 2011. Anti-inflammatory effects of methanol extract of codium fragile in lipopolysaccharide-stimulated RAW 264.7 cells. J. Med. Food 15: 44-50. https://doi.org/10.1089/jmf.2010.1540
  25. Gil TY, Kang YM, Eom YJ, Hong CH, An HJ. 2019. Anti-atopic dermatitis effect of Seaweed fulvescens extract via inhibiting the STAT1 pathway. Mediators Inflamm. 2019: 3760934.
  26. Schaltz KF, Sauer SPA. 2023. A theoretical study of hydrogen abstraction reactions in guanosine and uridine. Int. J. Mol. Sci. 24: 8192.
  27. Cao Y, Duan J, Guo J, Guo S, Zhao J. 2014. Rapid determination of nucleosides, nucleobases and free amino acids in brown seaweeds using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Appl. Phycol. 26: 675-686. https://doi.org/10.1007/s10811-013-0079-3
  28. Luo Y, Chen H, Huang R, Wu Q, Li Y, He Y. 2021. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-kB signals in OVA-induced asthmatic mice. Pulm. Pharmacol. Ther. 69: 102049.
  29. Evaldsson C, Ryden I, Uppugunduri S. 2007. Anti-inflammatory effects of exogenous uridine in an animal model of lung inflammation. Int. Immunopharmacol. 7: 1025-1032. https://doi.org/10.1016/j.intimp.2007.03.008
  30. Uzbay TI, Oglesby MW. 2001. Nitric oxide and substance dependence. Neurosci. Biobehav. Rev. 25: 43-52. https://doi.org/10.1016/S0149-7634(00)00049-X
  31. Wang Q, Liu W, Yue Y, Sun C, Zhang Q. 2020. Proteoglycan from Bacillus sp. BS11 inhibits the inflammatory response by suppressing the MAPK and NF-κB pathways in lipopolysaccharide-induced RAW264.7 macrophages. Mar. Drugs 18: 585.
  32. Guo C, Yang L, Luo J, Zhang C, Xia Y, Ma T, et al. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. Int. Immunopharmacol. 38: 349-356. https://doi.org/10.1016/j.intimp.2016.06.021
  33. Liu Y, Fang S, Li X, Feng J, Du J, Guo L, et al. 2017. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway. Sci. Rep. 7: 11549.
  34. Lee SH, Lee NY, Choi SH, Oh CH, Won GW, Bhatta MP, et al. 2023. Molecular mechanism of the anti-inflammatory and skin protective effects of Syzygium formosum in human skin keratinocytes. Food Sci. Biotechnol. 33: 689-697. https://doi.org/10.1007/s10068-023-01380-4
  35. Kim C, Ji J, Ho Baek S, Lee JH, Ha IJ, Lim SS, et al. 2019. Fermented dried Citrus unshiu peel extracts exert anti-inflammatory activities in LPS-induced RAW264.7 macrophages and improve skin moisturizing efficacy in immortalized human HaCaT keratinocytes. Pharm. Biol. 57: 392-402. https://doi.org/10.1080/13880209.2019.1621353
  36. Kim MJ, Hwang BS, Hwang Y, Jeong YT, Jeong DW, Oh YT. 2023. Anti-inflammatory and antiatopic effects of Rorippa cantoniensis (Lour.) ohwi in RAW 264.7 and HaCaT cells. Molecules 28: 5463.
  37. Gutierrez RMP, Hoyo-Vadillo C. 2017. Anti-inflammatory potential of Petiveria alliacea on activated RAW264. 7 murine macrophages. Pharmacogn. Mag. 13: S174.
  38. Li M, Zhang L, Cai RL, Gao Y, Qi Y. 2012. Lipid-soluble extracts from salvia miltiorrhiza Inhibit production of LPS-induced inflammatory mediators via NF-kB modulation in RAW 264.7 cells and perform antiinflammatory effects in vivo. Phytother. Res. 26: 1195-1204. https://doi.org/10.1002/ptr.3680
  39. Park YK, Rasmussen HE, Ehlers SJ, Blobaum KR, Lu F, Schlegal VL, et al. 2008. Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kB in RAW 264.7 macrophages. Nutr. Res. 28: 83-91. https://doi.org/10.1016/j.nutres.2007.11.008
  40. Im AR, Yeon SH, Lee JS, Um KA, Ahn YJ, Chae S. 2016. Protective effect of fermented Cyclopia intermedia against UVB-induced damage in HaCaT human keratinocytes. BMC Complement Altern. Med. 16: 261.
  41. Cohen EM. 1973. Dexamethasone, pp. 163-197. In Florey K (ed.), Analytical Profiles of Drug Substances, Ed. Academic Press, Massachusetts, USA.
  42. Kim MM, Rajapakse N, Kim SK. 2009. Anti-inflammatory effect of Ishige okamurae ethanolic extract via inhibition of NF-kB transcription factor in RAW 264.7 cells. Phytother. Res. 23: 628-634. https://doi.org/10.1002/ptr.2674
  43. Oh JS, Seong GS, Kim YD, Choung SY. 2021. Effects of deacetylasperulosidic acid on atopic dermatitis through modulating immune balance and skin barrier function in HaCaT, HMC-1, and EOL-1 cells. Molecules 26: 3298.
  44. Chiricozzi A, Maurelli M, Peris K, Girolomoni G. 2020. Targeting IL-4 for the treatment of atopic dermatitis. ImmunoTargets Ther. 9: 151-156. https://doi.org/10.2147/ITT.S260370
  45. Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, et al. 2023. The role of TSLP in atopic dermatitis: from pathogenetic molecule to therapeutical target. Mediators Inflam. 2023: 7697699.
  46. Polanyi L, Niessen CM, Vohlen C, Stinn J, Kretschmer T, Jentgen V, et al. 2020. Intrauterine growth restriction induces skin inflammation, increases TSLP and impairs epidermal barrier function. J. Mol. Med. 98: 279-289. https://doi.org/10.1007/s00109-019-01867-w
  47. Son Y, Yang W, Park S, Yang J, Kim S, Lyu JH, et al. 2023. The anti-inflammatory and skin barrier function recovery effects of Schisandra chinensis in mice with atopic dermatitis. Medicina 59: 1353.
  48. Furue M. 2020. Regulation of filaggrin, loricrin, and involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: pathogenic implications in atopic dermatitis. Int. J. Mol. Sci. 21: 5382.
  49. Lee WJ, Park KH, Cha HW, Sohn MY, Park KD, Lee SJ, et al. 2014. The expression of involucrin, loricrin, and filaggrin in cultured sebocytes. Ann. Dermatol. 26: 134-137. https://doi.org/10.5021/ad.2014.26.1.134
  50. Sandilands A, Sutherland C, Irvine AD, McLean WHI. 2009. Filaggrin in the frontline: role in skin barrier function and disease. J. Cell Sci. 122: 1285-1294. https://doi.org/10.1242/jcs.033969
  51. Drislane C, Irvine AD. 2020. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 124: 36-43. https://doi.org/10.1016/j.anai.2019.10.008
  52. Varma SR, Sivaprakasam TO, Arumugam I, Dilip N, Raghuraman M, Pavan KB, et al. 2019. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil. J. Tradit. Complement. Med. 9: 5-14. https://doi.org/10.1016/j.jtcme.2017.06.012
  53. Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, et al. 2020. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci. 21: 4620.