• Title/Summary/Keyword: Interleukin 17A

Search Result 200, Processing Time 0.021 seconds

Anti-inflammatory Effects of Aurantio-obtusin isolated from Cassia tora L. in RAW264.7 Cells (결명자로부터 분리된 Aurantio-obtusin의 항염증 활성)

  • Lee, Ki Ho;Jang, Ji Hun;Woo, Kyeong Wan;Nho, Jong Hyun;Jung, Ho Kyung;Cho, Hyun Woo;Yong, Ju Hyun;An, Byeongkwan
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Cassia tora L. have been used as a folk medicine in Korea. This study investigated anti-inflammatory effect of aurantio-obtusin isolated from C. tora. We isolated aurantio-obtusin from 50% ethanol extracts of C. tora L. We investigated the anti-inflammatory effects of aurantio-obtusin on the lipopolysaccharide (LPS)-stimulated inflammatory response in murine macrophage cell line (Raw 264.7). To investigate the cytotoxicity of aurantio-obtusin on RAW 264.7 cells, MTS assay was performed. RAW 264.7 cells were treated with aurantio-obtusin at different concentrations (12.5, 25, 50, $100{\mu}M$) for 30 h. The result showed that aurantio-obtusin had no cytotoxic effect in a concentration range of $12.5-100{\mu}M$. To determine the effect of aurantio-obtusin on LPS-induced NO production, the NO concentration measurement was performed. RAW 264.7 cells were treated with aurantio-obtusin at 12.5, 25, 50 and $100{\mu}M$ for 24 h, and the results showed that the NO production of aurantio-obtusin-treated cells compared to LPS alone treated group was significantly decreased in a dose-dependent manner. Pretreatment of aurantio-obtusin inhibited LPS-induced NO production in a dose-dependent manner. To find out inhibitory mechanisms of aurantio-obtusin on inflammatory mediators, we examined the $PGE_2$ pathways. As a result, $PGE_2$ were decreased in a dose-dependent manner by aurantio-obtusin. The release of interleukin-$1{\beta}$ (IL-$1{\beta}$) and IL-6 were also reduced. Moreover, aurantio-obtusin suppressed LPL-induced $I{\kappa}B-{\alpha}$ degradation. These results suggest that the down regulation of NO, $PGE_2$, IL-$1{\beta}$ and IL-6 expression by aurantio-obtusin are achieved by the downregulation of NF-${\kappa}B$ activity.

Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs

  • Song, Young Min;Kim, Myeong Hyeon;Kim, Ha Na;Jang, Insurk;Han, Jeong Hee;Fontamillas, Giselle Ann;Lee, Chul Young;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.403-409
    • /
    • 2018
  • Objective: The present study was conducted to investigate the effects of a lipid-coated zinc oxide (ZnO) supplement Shield Zn (SZ) at the sub-pharmacological concentration on intestinal morphology and gene expression in weanling pigs, with an aim to gain insights into the mechanism of actions for SZ. Methods: Forty 22-day-old weanling pigs were fed a nursery diet supplemented with 100 or 2,500 mg Zn/kg with uncoated ZnO (negative control [NC] or positive control [PC], respectively), 100, 200, or 400 mg Zn/kg with SZ for 14 days and their intestinal tissues were taken for histological and molecular biological examinations. The villus height (VH) and crypt depth (CD) of the intestinal mucosa were measured microscopically following preparation of the tissue specimen; expression of the genes associated with growth and immune function was determined using the real-time quantitative polymerase chain reaction. Results: There was no difference in daily gain, gain:feed, and diarrhea score between the SZ group and either of NC and PC. The VH and VH:CD ratio were less for the SZ group vs NC in the jejunum and duodenum, respectively (p<0.05). The jejunal mucosal mRNA levels of insulin-like growth factor (IGF-I) and interleukin (IL)-10 regressed and tended to regress (p = 0.053) on the SZ concentration with a positive coefficient, respectively, whereas the IL-6 mRNA level regressed on the SZ concentration with a negative coefficient. The mRNA levels of IGF-I, zonula occludens protein-1, tumor necrosis $factor-{\alpha}$, IL-6, and IL-10 did not differ between the SZ group and either of NC and PC; the occludin and transforming growth $factor-{\beta}1$ mRNA levels were lower for the SZ group than for PC. Conclusion: The present results are interpreted to suggest that dietary ZnO provided by SZ may play a role in intestinal mucosal growth and immune function by modulating the expression of IGF-I, IL-6, and IL-10 genes.

A Case of Multisystem Inflammatory Syndrome in Children (MIS-C) with Acute Myocarditis

  • Lim, Jin Gyu;Lee, Da Hye;Oh, Kyung Jin;Choi, Sujin;Song, Young Hwan;Lee, Joowon;Lee, Hyunju
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.3
    • /
    • pp.173-180
    • /
    • 2021
  • After initial reports of multisystem inflammatory syndrome in children (MIS-C) in April 2020 in Europe, this disease has been known to occur in children with recent history of coronavirus disease 2019 (COVID-19) and most cases have been reported in Europe and the Unites States of America. We report a case of a 14-year-old girl who was diagnosed with MIS-C with acute myocarditis and successfully treated with intravenous immunoglobulin (IVIG), methylprednisolone, and anakinra. At initial presentation, she had persistent high fever, generalized rash, generalized swelling, abdominal pain, and low blood pressure. She showed a remarkably elevated level of inflammation and cardiac enzyme markers and had a previous history of COVID-19 5 weeks before the initial presentation. After extensive work up, other infectious and non-infectious causes were excluded. She was diagnosed with MIS-C and initially treated with IVIG and high-dose methylprednisolone; however, despite treatment, her heart function deteriorated and coronary artery dilatation progressed. Therefore, anakinra, an interleukin-1 receptor antagonist, was administered on hospital day 6, after which her cardiac function exhibited improvement. She was discharged on hospital day 19 without any symptoms, and follow-up echocardiography after 1 month revealed fully recovered heart function with normal coronary arteries.

Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Jiae;Lee, Sooyeon;Song, Ki-Duk;Cha, Jihye;Dang, Hoang Vu;Tran, Ha Thi Thanh;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods: Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results: In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2'-5'-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion: Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Effect of golden needle mushroom (Flammulina velutipes) stem waste on laying performance, calcium utilization, immune response and serum immunity at early phase of production

  • Mahfuz, Shad;Song, Hui;Liu, Zhongjun;Liu, Xinyu;Diao, Zipeng;Ren, Guihong;Guo, Zhixin;Cui, Yan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.705-711
    • /
    • 2018
  • Objective: This experiment was conducted to evaluate the effects of golden needle mushroom (Flammulina velutipes) stem waste (FVW), on organic eggs production, calcium utilization, antibody response, serum immunoglobulin, and serum cytokine concentration at early phase of production in laying hens. Methods: A total 210, 19 weeks old aged ISA Brown layers were randomly assigned into 5 equal treatment groups, with 7 replications of 6 hens each. Dietary treatment included a standard basal diet as control; antibiotic (0.05% flavomycin); 2% FVW; 4% FVW; and 6% FVW. The experimental duration was 10 weeks. Results: There was no significant differences (p>0.05) on hen day egg production, egg weight, egg mass, feed intake, and feed conversion ratio (FCR) among experimental groups. Unmarketable eggs were significantly lower (p<0.05) both in 4% FVW and 6% FVW fed groups than control group. The calcium retention and calcium in egg shell deposition were significantly higher (p<0.05) in FVW inclusion groups than control and antibiotic groups. Antibody titers against Newcastle diseases were significantly higher (p<0.05) in 6% FVW fed group (except combined with 4% FVW at day 147) and infectious bronchitis were significantly higher (p<0.05) in FVW fed groups (except 2% FVW and 4% FVW at day 161) than control and antibiotic groups. Serum immunoglobulin sIgA was significantly higher (p<0.05) in all levels of FVW and IgG was significantly higher (p<0.05) in 4% FVW than control and antibiotic groups. Serum cytokine concentration interleukin-2 (IL-2) was significantly higher (p<0.05) in 6% FVW; IL-6 and tumor necrotic $factor-{\alpha}$ were significantly higher (p<0.05) both in 4% FVW and 6% FVW than control and antibiotic groups; IL-4 was significantly higher (p<0.05) in antibiotic, 2% FVW and 4% FVW fed groups than control. Conclusion: F. velutipes mushroom waste can be used as a novel substitute for antibiotic for organic egg production and sound health status in laying hens.

Effects of aflatoxin B1 combined with ochratoxin A and/or zearalenone on metabolism, immune function, and antioxidant status in lactating dairy goats

  • Huang, Shuai;Zheng, Nan;Fan, Caiyun;Cheng, Ming;Wang, Shang;Jabar, Adil;Wang, Jiaqi;Cheng, Jianbo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Objective: This experiment investigated the effects of aflatoxin B1 (AFB1) alone or mixed with ochratoxin A (OTA) and/or zearalenone (ZEA) on the metabolism, immune function, and antioxidant status of dairy goats. Methods: Fifty lactating Laoshan dairy goats were randomly assigned to one of five treatment groups (n = 10) for 14 days. Goats were fed no additive (control) or administered with $50{\mu}g\;AFB1/kg$ dry matter (DM) (AFB1), $50{\mu}g\;AFB1/kg$ $DM+100{\mu}g\;OTA/kg$ DM (AFB1+OTA), $50{\mu}g\;AFB1/kg$ $DM+500{\mu}g\;ZEA/kg$ DM (AFB1+ZEA), or $50{\mu}g\;AFB1/kg$ $DM+100{\mu}g\;OTA/kg$ $DM+500{\mu}g\;ZEA/kg$ DM (AFB1+OTA+ZEA). Results: Dry matter intake and milk production were lower in goats fed AFB1+OTA+ZEA than in controls. Supplementation with AFB1, OTA, and ZEA significantly decreased red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean platelet volume, and significantly increased white blood cell count, when compared with the control group. Compared with control, the combination of AFB1, OTA, and ZEA significantly increased alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, total bilirubin (TBIL), interleukin-6, and malondialdehyde (MDA), but significantly reduced immunoglobulin A concentration, the activities of superoxide dismutase (SOD) and glutathione peroxides (GSH-Px), and total antioxidant capacity (T-AOC) in serum. Administration of AFB1 combined with OTA led to higher ALP, ALT, TBIL, and MDA, as well as lower milk production, SOD and GSH-Px activities, and T-AOC, than administration of AFB1 combined with ZEA. Conclusion: The mixture of AFB1, OTA, and ZEA exerted the greatest adverse effects on dairy goats, meanwhile the deleterious damage of the other mycotoxin combinations were in varying degrees. The findings of this study could provide guidance for the prevention and treatment of the consequences of contamination of animal feeds with combinations of mycotoxin.

Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows

  • Zhao, Yiguang;Tang, Zhiwen;Nan, Xuemei;Sun, Fuyu;Jiang, Linshu;Xiong, Benhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1096-1102
    • /
    • 2020
  • Objective: An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods: Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from -60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On -10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results: Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion: Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Anti-inflammatory Effects of Salvia Miltiorrhizae Radix Water Extract in RAW 264.7 Cells and Mouse Induced by Lipopolysaccharide (단삼 물 추출물의 LPS로 유도된 RAW 264.7 세포와 생쥐 염증모델에서의 항염증 효과)

  • Kim, Gun-Hee;Hong, Ka-Kyung;Cho, Han-Baek;Choi, Chang-Min;Kim, Song-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • Objectives: This study was performed to identify the anti-inflammatory effects of Salvia miltiorrhizae radix Water extract (SMW) on lipopolysaccharide (LPS) induced inflammation. Methods: RAW 264.7 cells were treated with 500 ng/ml of LPS. SMW (0.1, 0.25, 0.5 mg/ml) was treated 1 h prior to LPS. Cell viability was measured by MTT assay. Levels of nitric oxide (NO) were measured with Griess reagent and pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B ($NF-{\kappa}B$) activation by western blot. In addition, we observed mice survival rate after LPS and examined their cytokine levels of serum and liver tissue. Results: SMW itself did not have cytotoxic effects in RAW 264.7 cells less than 0.5 mg/ml. SMW treatment inhibited the production of NO, and interleukin $(IL)-1{\beta}$ which is pro-inflammatory cytokine. And SMW treatment inhibited the LPS-induced activation of MAPKs such as extracellular signal-regulated kinase1/2 (ERK1/2), p38 kinases (p38), c-Jun NH2-terminal kinase (JNK) and $NF-{\kappa}B$. In addition, it also showed reducing the level of $IL-1{\beta}$ on the serum and liver tissue of mice. Also, death of LPS-induced mice was inhibited by SMW. Conclusions: The result suggests that treatment of SMW could reduce the LPS-induced inflammation. Thereby, SMW could be used as a protective agent against inflammation. Also, this study could give a clinical basis that SMW could be a drug or agent to prevent inflammatory diseases.