• Title/Summary/Keyword: Interlaminar Stress

Search Result 66, Processing Time 0.029 seconds

Three-dimensional stress analysis of composite laminates patches under extension load (인장하중 하에서 복합재 적층 패치의 3 차원 응력 해석)

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Heung-Soo;Grediac, Michel
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.652-657
    • /
    • 2008
  • A stress distribution of composite laminates patches is obtained by using the Kantorovich method when the substrate is under uniaxial load. The analysis is based on the stress function approach and uses the complementary virtual work principle. The three-dimensional stresses satisfy the traction free conditions at the free edges and the top surfaces of the patch. The stress of the bottom surfaces of the patch is obtained from equilibrium equation of patch and substrate. To demonstrate the efficiency and validity of the proposed analysis, numerical examples for cross-ply and quasi-isotropic laminates are included. The present method provides accurate stresses in the interior and near the free edges of composite laminate patches.

  • PDF

A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites (구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구)

  • Hong, Myung-Sun;Bae, Kyong-Min;Choi, Woong-Ki;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

A Study on the Optimization of Ply Angles for Composite Tube using Design of Experiments (실험계획법을 이용한 복합재 경통 적층각의 최적 설계에 관한 연구)

  • Park, Byong-Ug;Seo, Yu-Deok;Kim, Hyun-Jung;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik;Chang, Su-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.627-633
    • /
    • 2009
  • Composite has become one of the most frequently used material for a tube of satellite camera due to its attractive characteristics. However, laminated composites can be weakened by delamination which comes from interlaminar stress. Such failure mode cause structural instability of the camera as well as degradation of optical quality. Therefore composite tube should be robust in delamination. Also, composite tube should have high stiffness, sufficient high natural frequency and small coefficient of thermal expansion. The design procedures presented in this paper are based on design of experiments. The experiments for mechanical analysis are designed by the tables of orthogonal arrays. In order to manipulate the various mechanical properties systematically, multiple-attribute decision making(MADM) is employed. Through analysis of variance and F-test, the critical design variables which have dominant influences on mechanical performance are determined. Finally improved ply angles for composite tube are determined.

Thermal Stress-induced Edge Failure of Thin Composite Laminates (열응력에 의한 얇은 복합적층판의 자유경계단 부위 파손)

  • 이성혁;최낙삼
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1999
  • Thermal stress-induced failure in the free edge region of various thin carbon/epoxy composite laminates(1mm thick) has been investigated using the three-dimensional finite-element stress analysis, ultrasonic C-scan and microscopic observations. High thermal in-plane and interlaminar stresses were predicted in the interior layer near the free edge boundaries of the laminates. In the interior lamina, not in the skin lamina, of the thin laminates with lay-up of $[0_2/90_2]_s,\;[45_2/-45_0]_s,\;[0_2/60_2]_s$ treated by liquid $N_2$ immersion, many transverse matrix cracks took place due to thermal stress concentration, which agreed qualitatively with the above predictions.

  • PDF

Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact (적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.

F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire (타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석)

  • 김용우;김종국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.

The Study on the Characteristics of Mode I Crack for Cross-ply Carbon/Epoxy Composite Laminates Based on Stress Fields (응력장을 이용한 직교적층 탄소섬유/에폭시 복합재 적층판의 모드 I 균열 특성 연구)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.327-334
    • /
    • 2019
  • The delamination is a special mode of failure occurring in composite laminates. Several numerical studies with finite element analysis have been carried out on the delamination behavior of unidirectional composite laminates. On the other hand, the fracture for the multi-directional composite laminates may occur not only along the resin-fiber interface between plies known as interply or interlaminar fracture but also within a ply known as interyarn or intralaminar fracture accompanied by matrix cracking and fiber bridging. In addition, interlaminar and intralaminar cracks appear at irregular proportions and intralaminar cracks proceeded at arbitrary angle. The probabilistic analysis method for the prediction of crack growth behavior within a layer is more advantageous than the deterministic analysis method. In this paper, we analyze the crack path when the mode I load is applied to the cross-ply carbon/epoxy composite laminates and collect and analyze the probability data to be used as the basis of the probabilistic analysis in the future. Two criteria for the theoretical analysis of the crack growth direction were proposed by analyzing the stress field at the crack tip of orthotropic materials. Using the proposed method, the crack growth directions of the cross-ply carbon/epoxy laminates were analyzed qualitatively and quantitatively and compared with experimental results.

Influence of Acid and Base Surface Treatment of Multi-Walled Carbon Nanotubes on Mechanical Interfacial Properties of Carbon Fibers-Reinforced Composites (산-염기 표면처리된 MWNTs의 첨가가 탄소섬유 강화 복합재료의 기계적 계면특성에 미치는 영향)

  • Jung, Gun;Nah, Chang-Woon;Seo, Min-Kang;Byun, Joon-Hyung;Lee, Kyu-Hwan;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.612-616
    • /
    • 2012
  • In this work, the effect of chemical treatments of multi-walled carbon nanotubes (MWNTs) on the mechanical interfacial properties of carbon fiber fabric-reinforced composites was investigated. The surface properties of the MWNTs were determined by acid and base values, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses. The mechanical interfacial properties of the composites were assessed by interlaminar shear stress (ILSS) and critical stress intensity factor ($K_{IC}$). The chemical treatments based on acid and base reactions led to a significant change of surface characteristics of the MWNTs, especially A-MWNTs/carbon fibers/epoxy composites had higher mechanical properties than those of B-MWNTs and non-treated MWNTs/carbon fibers/epoxy composites. These results were probably due to the improvement of interfacial bonding strength, resulting from the acid-base interaction and hydrogen bonding between the epoxy resins and the MWNT fillers.

Direct Numerical Simulation of Composite laminates Under low velocity Impact (저속충격을 받는 적층복합재료 평판의 직접 수치모사)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. But it is well known that the conventional approach based on the homogenization has the limit in description of damage. The work reported here is an effort in getting better predictions of dynamic behavior and damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials are investigated and compared with the results of the homogenized model which has been used in the conventional approach to impact analysis. Also the multiscale model based on DNS concept is developed in order to enhance the effectiveness of impact analysis, and we present the results of multiscale analysis considering micro and macro structures simultaneously.