• Title/Summary/Keyword: Interior point

Search Result 808, Processing Time 0.032 seconds

Security Constrained Economic Dispatch Using Primal Interior Point Method (Primal Interior Point법에 의한 선로 전력조류 제약을 고려한 경제급전)

  • Jeong, Rin-Hak;Jeong, Jae-Gil;Lee, Seung-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.480-488
    • /
    • 2001
  • This paper presents a technique that can obtain an optimal solution for the Security-Constrained Economic Dispatch (SCED) problems using the Interior Point Method (IPM) while taking into account of the power flow constraints. The SCED equations are formulated by using only the real power flow equations from the optimal power flow. Then an algorithm is presented that can linearize the SCED equations based on the relationships among generation real power outputs, loads, and transmission losses to obtain the optimal solutions by applying the linear programming (LP) technique. The objective function of the proposed linearization algorithm are formulated based on the fuel cost functions of the power plants. The power balance equations utilize the Incremental Transmission Loss Factor (ITLF) corresponding to the incremental generation outputs and the line constraints equations are linearized based on the Generalized Generation Distribution Factor (GGDF). Finally, the application of the Primal Interior Point Method (PIPM) for solving the optimization problem based on the proposed linearized objective function is presented. The results are compared with the Simplex Method and the promising results ard obtained.

  • PDF

Optimal Governor Response Power Flow with Nonlinear Interior Point Method (비선형 내점법을 이용한 최적 조속기 응동 조류계산)

  • Kim, Tae-Gyun;Lee, Byong-Joon;Song, Hwa-Chang;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1527-1534
    • /
    • 2007
  • This paper proposes a new concept of optimal governor-response power flow (OGPF) to obtain an optimal set of control parameters when the systems are in mid-term conditions after disturbances, ignoring the system dynamics. The idea of GOPF simply comes from the attempt to find an optimal solution of the governor-response power flow (GPF), which is a pre-exiting tool that is used to get power flow solutions that would exist several seconds after an event is applied. GPF incorporates the simplified model of governors in the systems into the power flow equations. This paper explains the concept of OGPF and depicts the OGPF formulation and application of a nonlinear interior point method as the solution technique. Also, this paper includes an example with New England 39-bus test system to illustrate the effectiveness of GOPF.

ON COMPLEXITY ANALYSIS OF THE PRIMAL-DUAL INTERIOR-POINT METHOD FOR SECOND-ORDER CONE OPTIMIZATION PROBLEM

  • Choi, Bo-Kyung;Lee, Gue-Myung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.93-111
    • /
    • 2010
  • The purpose of this paper is to obtain new complexity results for a second-order cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOCO by using the proximity function and give its complexity analysis, and then we show that the new worst-case iteration bound for the IPM is $O(q\sqrt{N}(logN)^{\frac{q+1}{q}}log{\frac{N}{\epsilon})$, where $q{\geqq}1$.

AN ADAPTIVE PRIMAL-DUAL FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR OPTIMIZATION

  • Asadi, Soodabeh;Mansouri, Hossein;Zangiabadi, Maryam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1831-1844
    • /
    • 2016
  • In this paper, we improve the full-Newton step infeasible interior-point algorithm proposed by Mansouri et al. [6]. The algorithm takes only one full-Newton step in a major iteration. To perform this step, the algorithm adopts the largest logical value for the barrier update parameter ${\theta}$. This value is adapted with the value of proximity function ${\delta}$ related to (x, y, s) in current iteration of the algorithm. We derive a suitable interval to change the parameter ${\theta}$ from iteration to iteration. This leads to more flexibilities in the algorithm, compared to the situation that ${\theta}$ takes a default fixed value.

Application of Quadratic Interior Point Method to Economic Dispatch (Quadratic Interior Point 법을 적용한 전력계통의 경제급전)

  • Lee, Hong-Joo;Chung, Jai-Gil;Lee, In-Yong;Kim, Kyung-Shin;Park, Kyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.344-346
    • /
    • 2000
  • The Paper describes the implementation of a quadratic interior point method for optimal power flow involves the determination of the optimal of a given objectives function subject to given constraints. The scheme developed solves the quadratic or linear optimization problem subject to linear constraints. The algorithm has been evaluated on a 14-bus system, and its accuracy and speed are demonstrated.

  • PDF

NEW INTERIOR POINT METHODS FOR SOLVING $P_*(\kappa)$ LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, You-Young;Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.189-202
    • /
    • 2009
  • In this paper we propose new primal-dual interior point algorithms for $P_*(\kappa)$ linear complementarity problems based on a new class of kernel functions which contains the kernel function in [8] as a special case. We show that the iteration bounds are $O((1+2\kappa)n^{\frac{9}{14}}\;log\;\frac{n{\mu}^0}{\epsilon}$) for large-update and $O((1+2\kappa)\sqrt{n}log\frac{n{\mu}^0}{\epsilon}$) for small-update methods, respectively. This iteration complexity for large-update methods improves the iteration complexity with a factor $n^{\frac{5}{14}}$ when compared with the method based on the classical logarithmic kernel function. For small-update, the iteration complexity is the best known bound for such methods.

  • PDF

A Study on Algorithm for Calculating Power Transfer Capability in interconnected Power System using Interior Point Method (Interior Point Method를 이용한 연계계통에서의 수송능력산정 알고리즘개발에 관한 연구)

  • Jo, J.H.;Kim, Y.H.;Lee, Buhm;Choi, S.K.;Nam, K.W.;Moon, H.K.;Jung, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.210-213
    • /
    • 2001
  • This paper presents a efficient algorithm for calculating power transfer capability in interconnected large power system. The approach is based on interior point method. The efficiency of this method is favorable for large systems. IEEE RTS-96 power system is utilized to evaluate the proposed method.

  • PDF

A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_*(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

  • Cho, You-Young;Cho, Gyeong-Mi
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

A Simplified Analysis Approach on the Rotor Position Detection Error in Sensorless Interior Permanent Magnet Brushless DC Motor Drives (센서리스 매입형 영구자석 브러시리스 직류전동기 구동장치에서 단순화된 회전자 위치검출 오차 분석 방법)

  • Lee, Kwang-Woon;Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.449-452
    • /
    • 2016
  • This paper presents a simplified analysis on the rotor position detection error in sensorless interior permanent magnet brushless DC motor (BLDCM) drives, wherein terminal voltage sensing based on the back-electromotive force (back-EMF) zero-crossing point detecting circuitry is employed. The effect of a rotor saliency on the back-EMF's zero-crossing point detection is analyzed using the extended EMF-based voltage equation of the interior permanent BLDCM in a stationary reference frame, and thus the overall analysis is considerably simplified compared to the conventional one. Simulation results are provided to verify the effectiveness of the proposed method.