• Title/Summary/Keyword: Interior permanent magnet synchronous motor

Search Result 364, Processing Time 0.021 seconds

Torque Ripple Reduction based on Flux Linkage Harmonics Observer for an Interior PM Synchronous Motor including Back EMF Harmonics (왜곡된 역기전력을 갖는 매입형 영구자석 동기전동기의 쇄교자속 고조파 관측기를 이용한 토크리플 저감)

  • Jin, Yong-Sin;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The mechanical vibration of a PM synchronous motor at low speeds due to the back emf harmonics may be serious problems in some application such as MDPS(Motor driven power steering), electric vehicles. In this paper, torque ripple reduction for an interior PM synchronous motor including back emf harmonics is proposed. The dq flux linkage harmonics of the permanent magnet are estimated on real time by using the dq currents of the real system and the model of the MRAS observer. Based on the estimated flux linkage harmonics, the dq harmonic currents for reducing the torque ripples are compensated on the dq reference currents. The estimation of the flux linkage harmonics by the MRAS observer and the torque ripple reduction of the proposed algorithm was verified by the simulation and experiment.

A Stress Analysis Method for the Rotor Design of an IPMSM Considering Radial Force

  • Kim, Won-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.888-892
    • /
    • 2014
  • In the design of the rotor of an interior permanent magnet synchronous motor (IPMSM), the bridge between the permanent magnets helps prevent the scattering of permanent magnets and pole pieces during high-speed operation. In the design of a motor, if the bridge is too thick, its performance will be largely degraded because of flux leakage. Additionally, if the bridge is too thin, its mechanical safety cannot be guaranteed. Thus, an accurate analysis method is required to determine the thickness of the bridge. Conventional stress analysis methods determine the thickness of the bridge by only considering the centrifugal force of the rotors. In this study, however, a method that additionally considers the radial force generated by the air-gap flux density based on the conventional methods is proposed and reflected in the design of a traction motor for electric vehicles. Finally, the validity of this study is verified through a reliability test related to high-speed operation.

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong;Liu, Jinglin;Hu, Yihua;Zhang, Xiaokang;Ni, Kai;Si, Jikai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1945-1955
    • /
    • 2018
  • High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

Torque Ripple Reduction of an Interior PM Synchronous Motor by Compensating Harmonic Currents Based on Flux Linkage Harmonics

  • Nam, Myung Joon;Kim, Jong Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1223-1230
    • /
    • 2017
  • The back emf harmonics of a permanent magnet (PM) synchronous motor is a major source of torque ripple. For torque control applications including column fitted MDPS (motor driven power steering) systems, it is essential to reduce the mechanical vibrations due to torque ripples at low speeds. In this paper, a torque ripple reduction algorithm for interior PM synchronous motors is proposed. The harmonic currents that cancel the $6^{th}$ order torque harmonic are added to the nominal dq currents for MTPA (maximum torque per ampere) operation. The compensated harmonic currents are derived from flux linkage harmonics based on a FFT analysis of the back emf harmonics. Simulation and experimental results verify that the $6^{th}$ order torque harmonic and THD of the torque ripple are reduced by compensating the dq harmonic currents.

Thermal Analysis of Interior Permanent-Magnet Synchronous Motor by Electromagnetic Field-Thermal Linked Analysis

  • Lee, Sang-Taek;Kim, Hee-Jun;Cho, Ju-Hee;Joo, Dae-Suk;Kim, Dae-Kyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.905-910
    • /
    • 2012
  • This paper reports an investigation of pulse width modulation (PWM) techniques for twophase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electricaldegree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

Sensorless Control for a PM Synchronous Motor in a Single Piston Rotary Compressor

  • Cho Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • A sensorless control for an IPM (Interior Permanent Magnet) synchronous motor in a single piston rotary compressor is presented in this study. The rotor position is estimated from the d-axis and q-axis current errors between the real system and a motor model of the position estimator. The torque pulsation of the single piston rotary compressor is compensated to reduce speed ripples, as well as, mechanical noise and vibration. The proposed sensorless drive enables the compressor to operate at a lower speed which increases energy savings and reduces mechanical noise. It also gives high speed operations by a flux weakening control for rapid air-cooling and heating of the heat pump air-conditioners.