• 제목/요약/키워드: Intergranular

검색결과 345건 처리시간 0.029초

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

440A 강의 입계부식에 미치는 합금원소와 열처리의 영향(II) (The Effect of Alloying Elements and Heat Treatment on the Intergranular Corrosion of 440A Martensitic Stainless Steel(II))

  • 김영철;정병호;강창룡
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.52-57
    • /
    • 2011
  • 440A martensitic stainless steels which were modified with reduced carbon content(~0.5wt.%) and addition of small amount of vanadium, tungsten and molybdenum 0.4wt.%, 0.4wt.% and 0.68wt.% respectively were manufactured. Effects of alloying elements and tempering temperatures on the intergranular corrosion were investigated through the method of DL-EPR(Double-electrochemical potentiodynamic reactivation). It was thought that the highest DOS(Degree of sensitization) of specimens was obtained at the tempering temperature of $450^{\circ}C$ regardless of types of alloy because of the precipitation of Cr7C3. Addition of vanadium lowered DOS a little above the tempering temperature of $550^{\circ}C$. It was considered to be effected by precipitation of VC carbides. Intergranular corrosion was influenced more by tempering temperature than by alloying elements of V, W and Mo.

The Effect of Solution Treatment on Intergranular Corrosion Resistance of a New Type Ultra Low Carbon Stainless Steel

  • Julin, Wang;Nannan, Ni;Qingling, Yan;Lingli, Liu
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.140-146
    • /
    • 2007
  • In the paper, with corrosion velocity measurement and metallographic observation on specimens after sulfuric acid/ferric sulfate boiling experiment, intergranular corrosion tendency of the new type ultra low carbon stainless steel developed by ourselves which experienced solution treatment at different temperatures was evaluated. A VHX 500 super depth field tridimensional microscope was used to observe corrosion patterns on the sample surfaces. The depth and width of grain boundary corrosion groove were measured by the tridimensional microscope, which indicated that the corrosion degrees of the samples which received solution treatment at different temperatures are quite different. Transgranular corrosion at different degree occurred along with forged glide lines. After comparison it was proved that the stainless steel treated at $1100^{\circ}C$ performs very well against intergranular corrosion.

무가압분말 충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : II. 뮬라이트 & 코디어라이트 (The Fabrication and Characteristics of Porous Ceramics by Pressureless Powder Packing Forming Method ; II, Mullite & Cordierite)

  • 박정현;황명익;김동희;최환욱;김용남
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.671-678
    • /
    • 1999
  • Porous ceramics were fabricated from pressureless powder packing forming method using mullite and cordierite powders granulate by spray drying. The bending strength and shrinkage of porous ceramics were increased and their porosity were decreased with increasing temperature. It showed homogeneous distribution of 2$\mu\textrm{m}$ intergranular pores of mullite at 1400$^{\circ}C$, 2.5$\mu\textrm{m}$ intergranular pores of cordierite at 1300$^{\circ}C$ respedtively. Above that temperature intragranular particles were sintered and sintering by intergranular necking was extremely proceeded. In the test of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF

오스테나이트계 스테인리스강 모재 및 용접부의 인장특성과 내식성에 관한 연구 (A study on the tensile property and corrosion resistance of austenitic stainless base and weld metal)

  • 정호신;김조권;엄동석
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.71-78
    • /
    • 1996
  • The effect of chemical composition on mechanical properry and corrosion resistance of austenitic stainless steel was investigated. The main results obtained were as follows : 1. There was a linear relationship between the tensile strength of stainless steel and the $Cr_{eq}/Ni_{eq}$. The larger the $Cr_{eq}/Ni_{eq}$ was the higher the tensile strength of stainless steel. 2. There was a good correlationship between $Cr_{eq}/Ni_{eq}$ and intergranular, gerneral corrsion rate. 3. Intergranular corrosion rate decreased linearly with increasing Cr content. 4. General corrosion rate decreased linearly with increasing Ni content. 5. Logarithm corrosion rate of intergranular and general corrosion has a linear relationship with all of the factor of $Cr_{eq}/Ni_{eq}$, Cr and Ni content.

  • PDF

시효열처리 및 UNSM 처리에 따른 316L 스테인리스강의 입계부식거동 (Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment)

  • 이정희;김영식
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.313-324
    • /
    • 2015
  • Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering.

SUS 316鋼 의 高溫低사이클 피勞擧動 에 미치는 粒界절出物 의 影響 (Effect of grain boundary precipitation on low-cycle fatigue behavior aat elevated temperature of SUS 316 stainless steel)

  • 오세욱;국미무;산전방박;좌등철
    • 대한기계학회논문집
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 1980
  • The temperature and the grain boundary precipitation have the great influence on the low-cycle fatigue behavior of austenite stainless steel at elevated temperature. For the purpose of investigating the mechanism concerning the change of fatigue micro crack mode in SUS 316 under various conditions low-cycle fatigue test was carried out at the elevated temperature 600.deg.C, plastic strain range 2% and constant strain rate .5c.p.m. A special attention is given to the observation of intergranular crack initiation. The results obtained are summarized as follows. The low-cycle fatigue behavior of SUS 316 at 600.deg.C is affected by transition of crack initiation mode from intergranular to transgranular. The transition is due to the aging effect, which is caused by grain boundary precipitations of Cr$\_$23/C$\_$6/. Since the intergranular crack initiation is brought about by the grain boundary sliding, the transgranular crack initiates in case that the strengthening of grain boundary due to the precipitation of Cr$\_$23/C$\_$6/ carbides takes place ahead of the intergranular crack initiation.

316 스테인리스강의 입계부식에 미치는 열사이클과 응력의 영향 (Effect of Thermal Cycle and Stress on the Intergranular Corrosion in 316 Stainless Steel)

  • 정병호;김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.709-715
    • /
    • 2006
  • The effects of thermal cycle condition and applied stress on the intergranular corrosion in austenitic 316 type stainless steels were investigated. Specimens were solution-treated at 1100$^{\circ}C$ for one hour and then sensitized in the temperature range of $500{\sim}800^{\circ}C$ by holding $2{\sim}300s$ with a various applied stresses of $0{\sim}8kg/mm^2$. Degree of sensitization. DOS %, was measured through polarization curve by electrochemical DL-EPR test. Microstructural observations were also conducted DOS % increased with an increase of sensitization temperature and/or holding time. Increase of applied stress resulted in increase of DOS % and more corroded surface because of acceleration of intergranular corrosion and fine grain size due to the stress. Cr depleted zone near grain boundary was observed. The amount of depletion was profounded with an increase of sensitization temperature, holding time and applied stress. $M_{23}C_6$ carbides were precipitated discontinuously at grain boundary. However, its amount was relatively small in the thermal cycle condition of 800$^{\circ}C$, 300sec and 4kg/mm$^2$.

UNS N08810 합금의 입계부식손상과 원인 분석 (Elucidation of Intergranular Corrosion of UNS N08810 alloys)

  • 김영식;황보덕
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.196-204
    • /
    • 2012
  • Corrosion failure of petrochemical facilities is one of the difficulties in maintenance, since operating conditions of crude oil production, storage, and refinement are very aggressive. UNS N08810, which has been used for crude oil transportation pipes and storage tanks in petrochemical industries, shows good resistance to general corrosion and localized corrosion in several environments. Among its environments, UNS N08810 showed better corrosion resistance in fuel gas containing sulfuric acid and phosphoric acid and sulfur. However, ductility and toughness at high temperature over about $500^{\circ}C$ were greatly reduced due to microstructural change. In general, welding process is the representative method to join the parts in industrial components. Because the alloy by welding can be sensitized and corroded, the manufacturing process should be controlled. In this work, UNS N08810 was used and heat treatment conditions including solution and stabilization treatments were controlled. Oxalic acid etch test by ASTM A262 Practice A was done to evaluate the qualitative sensitization in room temperature. Huey test by ASTM A262 Practice C was done to evaluate the intergranular corrosion rate in boiling 65% $HNO_3$ solution. Also, the microstructure by thermal history was analyzed. Experimental alloy showed high intergranular corrosion rate and its corrosion mechanism was elucidated.

Al-Li-Cu-Zr합금의 시효에 따른 인장파괴모드변화에 미치는 미세조직의 영향 (The Influence of Microstructures on the Change of Monotonic Tensile Fracture Mode in Al-Li-Cu-Zr Alloy with Ageing)

  • 정동석;이수진;조현기
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.212-218
    • /
    • 1996
  • To clarify the influence of precipitation microstructure and inclusion on the monotonic tensile fracture behaviors in 2090 alloy aged at $180^{\circ}C$, the detailed measurement of hardness, tensile strength, elongation and the observation of scanning electron micrography, transmision electron micrography have been carried out. The transgranular shear ductile fracture has been observed in specimen quenched after solution treatment at $500^{\circ}C$ for 45min. While the under-aged specimen was fractured in both transgranular shear ductile and intergranular fracture mode, the fracture mode of peak-aged and over-aged alloy was predominantly intergranular fracture. The fracture behavior of each ageing condition was influenced by the change of precipitation microstructural features. In the case of peak-aged and over-aged alloys, the coarse and heterogeneous slip band caused by both shearable nature of the ${\delta}^{\prime}(Al_3Li)$ precipitates and PFZ along the high angle grain boundary aid the localization of deformation, resulting in low energy intergranular fracture. It was also estimated that the fractured T-type intermetallic phases (inclusion) and the equilibrium ${\delta}$(AlLi) phases which were formed at grain boundaries palyed an important role in promoting intergranular fracture mode.

  • PDF