• 제목/요약/키워드: Interferon-inducible protein-10

검색결과 53건 처리시간 0.026초

An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines

  • Seo, Jin-Won;Yang, Eun-Jeong;Kim, Se Hoon;Choi, In-Hong
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.696-701
    • /
    • 2015
  • Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA. It stimulates pro-inflammatory cytokine and interferon production. Here we reported the expression of a novel isoform of TLR3 in human astrocyte cell lines whose message is generated by alternative splicing. The isoform represents the N-terminus of the protein. It lacks many of the leucine-rich repeat domains, the transmembrane domain, and the intracellular Toll/interleukin-1 receptor domain of TLR3. Type I interferons (interferon-α and interferon-β) induced the expression of this isoform. Exogenous overexpression of this isoform inhibited interferon regulatory factor 3, signal transducers and activators of transcription 1, and Inhibitor of kappa B α signaling following stimulation. This isoform of TLR3 also inhibited the production of chemokine interferon-γ-inducible protein 10. Our study clearly demonstrated that the expression of this isoform of TLR3 was a negative regulator of signaling pathways and that it was inducible by type I interferons. We also found that this isoform could modulate inflammation in the brain.

Molecular analysis of chicken interferon-alpha inducible protein 6 gene and transcriptional regulation

  • Jeong-Woong Park;Marc Ndimukaga;Jaerung So;Sujung Kim;Anh Duc Truong;Ha Thi Thanh Tran;Hoang Vu Dang;Ki-Duk Song
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.183-196
    • /
    • 2023
  • Interferon-alpha inducible protein 6 (IFI6) is an interferon-stimulated gene (ISG), belonging to the FAM14 family of proteins and is localized in the mitochondrial membrane, where it plays a role in apoptosis. Transcriptional regulation of this gene is poorly understood in the context of inflammation by intracellular nucleic acid-sensing receptors and pathological conditions caused by viral infection. In this study, chicken IFI6 (chIFI6) was identified and studied for its molecular features and transcriptional regulation in chicken cells and tissues, i.e., lungs, spleens, and tracheas from highly pathogenic avian influenza virus (HPAIV)-infected chickens. The chIFI6-coding sequences contained 1638 nucleotides encoding 107 amino acids in three exons, whereas the duck IFI6-coding sequences contained 495 nucleotides encoding 107 amino acids. IFI6 proteins from chickens, ducks, and quail contain an IF6/IF27-like superfamily domain. Expression of chIFI6 was higher in HPAIV-infected White Leghorn chicken lungs, spleens, and tracheas than in mock-infected controls. TLR3 signals regulate the transcription of chIFI6 in chicken DF-1 cells via the NF-κB and JNK signaling pathways, indicating that multiple signaling pathways differentially contribute to the transcription of chIFI6. Further research is needed to unravel the molecular mechanisms underlying IFI6 transcription, as well as the involvement of chIFI6 in the pathogenesis of HPAIV in chickens.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek;Soojin Yoon;Yeo Eun Hwang;Dong-Eun Kim
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.249-255
    • /
    • 2016
  • Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.

Hepatitis E Virus Papain-Like Cysteine Protease Inhibits Type I Interferon Induction by Down-Regulating Melanoma Differentiation-Associated Gene 5

  • Kim, Eunha;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1908-1915
    • /
    • 2018
  • Upon viral infection, the host cell recognizes the invasion through a number of pattern recognition receptors. Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) recognize RNA molecules derived from invading viruses, activating down-stream signaling cascades, culminating in the induction of the type I interferon. On the other hand, viruses have evolved to evade type I interferon-mediated inhibition. Hepatitis E virus has been shown to encode a few antagonists of type I interferon and it is not surprising that viruses encode multiple mechanisms of viral evasion. In the present study, we demonstrated that HEV PCP strongly down-regulates MDA5-mediated activation of interferon ${\beta}$ induction in a dose-dependent manner. Interestingly, MDA5 protein expression was almost completely abolished. In addition, polyinosinic polycytidylic acid (poly(I:C))- and Sendai virus-mediated activation of type I interferon responses were similarly abrogated in the presence of HEV PCP. Furthermore, HEV PCP down-regulates several molecules that play critical roles in the induction of type I IFN expression. Taken together, these data collectively suggest that HEV-encoded PCP is a strong antagonist of type I interferon.

Pregnancy influences expression of interferon-stimulated genes, progesterone receptor and progesterone-induced blocking factor in ovine thyroid

  • Jianhua Cao;Shuxin Zhao;Yaqi Zhang;Jiabao Cai;Leying Zhang;Ling Yang
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1377-1386
    • /
    • 2024
  • Objective: Embryonic interferon-tau (IFNT) and progesterone affect expression of interferon-stimulated genes (ISGs), progesterone receptor (PGR) and progesterone-induced blocking factor (PIBF) in the ovine thyroid. Methods: Thyroids of ewes were sampled at day 16 of nonpregnancy, days 13, 16, and 25 of pregnancy, and real-time quantitative polymerase chain reaction assay, western blot and immunohistochemistry were used to detect expression of ISGs, PGR, and PIBF. Results: Free ISG15 protein was undetected, but ISG15 conjugated proteins upregulated at day 16 of pregnancy, and expression levels of ISG15 conjugated proteins, PGR isoform (70 kDa), PIBF, interferon-gamma-inducible protein 10 and myxovirusresistance protein 1 peaked, but expression level of signal transducer and activator of transcription 1 was the lowest at day 16 of pregnancy. In addition, the expression levels of PGR isoform (70 kDa) and signal transducer and activator of transcription 1 (STAT1) decreased, but levels of PGR isoform (43 kDa), 2',5'-oligoadenylate synthetase, IP-10 and MX1 increased at day 25 of pregnancy comparing with day 16 of the estrous cycle. Conclusion: Early pregnancy affects expression of ISGs, PGR, and PIBF in maternal thyroid through IFNT and progesterone, which may regulate thyroid autoimmunity and thyroid hormone secretion in ewes.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Association between Interferon-Inducible Protein 6 (IFI6) Polymorphisms and Hepatitis B Virus Clearance

  • Park, Geun-Hee;Kim, Kyoung-Yeon;Cho, Sung Won;Cheong, Jae Youn;Yu, Gyeong Im;Shin, Dong Hoon;Kwack, Kyu Bum
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.15-23
    • /
    • 2013
  • CD8+T cells are key factors mediating hepatitis B virus (HBV) clearance. However, these cells are killed through HBV-induced apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD) patients. Interferon-inducible protein 6 (IFI6) delays type I interferon-induced apoptosis in cells. We hypothesized that single nucleotide polymorphisms (SNPs) in the IFI6 could affect the chronicity of CLD. The present study included a discovery stage, in which 195 CLD patients, including chronic hepatitis B (HEP) and cirrhosis patients and 107 spontaneous recovery (SR) controls, were analyzed. The genotype distributions of rs2808426 (C > T) and rs10902662 (C > T) were significantly different between the SR and HEP groups (odds ratio [OR], 6.60; 95% confidence interval [CI], 1.64 to 26.52, p = 0.008 for both SNPs) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). The distribution of diplotypes that contained these SNPs was significantly different between the SR and HEP groups (OR, 6.58; 95% CI, 1.63 to 25.59; p = 0.008 and OR, 0.15; 95% CI, 0.04 to 0.61; p = 0.008, respectively) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). We were unable to replicate the association shown by secondary enrolled samples. A large-scale validation study should be performed to confirm the association between IFI6 and HBV clearance.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.

IFITM2 및 IFITM5 유전자다형성의 발굴과 궤양성대장염의 감수성과의 연관성 (Identification of the Polymorphisms in IFITM2 and IFITM5 Genes and their Association with Ulcerative Colitis)

  • 김헌수;모지수;알롬 콘도칼자항길;박원철;김권영;채수천
    • 생명과학회지
    • /
    • 제25권1호
    • /
    • pp.84-92
    • /
    • 2015
  • Interferon inducible transmembrane protein (IFITM) family 유전자는 인터페론(IFNs)의 동형 세포부착 기능 및 세포의 항-증식 활성과 같은 몇 가지 세포증식 과정에 연관되어 있다. 본 연구에서는 IFITM2 및 IFITM5 SNPs이 궤양성대장염의 감수성과 연관되어 있는지 알아 보고자 했다. 본 연구에서 직접 염기서열 분석법을 사용하여 IFITM2 유전자에서 총 13개, IFITM5 유전자에서는 12개의 유전적 변이를 발굴하였다. 이들의 SNPs의 유전자형 분석은 PCR-RFLP 법과 Taq-Man probe 분석법을 사용하였고, 일배체형 빈도 분석은 EM algorithm을 사용하여 분석하였다. 궤양성대장염 환자에서 IFITM2 및 IFITM5 SNPs의 유전자형과 대립유전자 빈도는 건강인 대조군과 비교했을 때 유의성이 없었다. 궤양성대장염 환자와 정상인 대조군에서 IFITM1의 rs77537847, IFITM2의 rs909097, IFITM5의 rs56069858을 지표로 하는 유전자형 조합 빈도를 분석한 결과 주된 유전자형 조합빈도에서는 유의성이 없는 것으로 나타났으나, 궤양성대장염 환자와 건강인 대조군의 GGT 유전자형조합 빈도 분석에서는 유의하게 다른 차이를 보였다(p=0.002). 이러한 결과에 의거하여 IFITMs의 SNPs 유전자형 조합이 궤양성대장염의 감수성과 연관성이 있고, 궤양성대장염의 유용한 유전자 마커로 사용 할 수 있다고 생각된다.