DOI QR코드

DOI QR Code

Association between Interferon-Inducible Protein 6 (IFI6) Polymorphisms and Hepatitis B Virus Clearance

  • Park, Geun-Hee (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Kim, Kyoung-Yeon (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Cho, Sung Won (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Cheong, Jae Youn (Department of Gastroenterology, Genomic Research Center for Gastroenterology, Ajou University School of Medicine) ;
  • Yu, Gyeong Im (Department of Preventive Medicine, Keimyung University School of Medicine) ;
  • Shin, Dong Hoon (Department of Preventive Medicine, Keimyung University School of Medicine) ;
  • Kwack, Kyu Bum (Department of Biomedical Science, College of Life Science, CHA University)
  • Received : 2013.01.21
  • Accepted : 2013.02.14
  • Published : 2013.03.31

Abstract

CD8+T cells are key factors mediating hepatitis B virus (HBV) clearance. However, these cells are killed through HBV-induced apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD) patients. Interferon-inducible protein 6 (IFI6) delays type I interferon-induced apoptosis in cells. We hypothesized that single nucleotide polymorphisms (SNPs) in the IFI6 could affect the chronicity of CLD. The present study included a discovery stage, in which 195 CLD patients, including chronic hepatitis B (HEP) and cirrhosis patients and 107 spontaneous recovery (SR) controls, were analyzed. The genotype distributions of rs2808426 (C > T) and rs10902662 (C > T) were significantly different between the SR and HEP groups (odds ratio [OR], 6.60; 95% confidence interval [CI], 1.64 to 26.52, p = 0.008 for both SNPs) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). The distribution of diplotypes that contained these SNPs was significantly different between the SR and HEP groups (OR, 6.58; 95% CI, 1.63 to 25.59; p = 0.008 and OR, 0.15; 95% CI, 0.04 to 0.61; p = 0.008, respectively) and between the SR and CLD groups (OR, 4.38; 95% CI, 1.25 to 15.26; p = 0.021 and OR, 4.12; 95% CI, 1.18 to 14.44; p = 0.027, respectively). We were unable to replicate the association shown by secondary enrolled samples. A large-scale validation study should be performed to confirm the association between IFI6 and HBV clearance.

Keywords

References

  1. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45:507-539. https://doi.org/10.1002/hep.21513
  2. Lee WM. Hepatitis B virus infection. N Engl J Med 1997; 337:1733-1745. https://doi.org/10.1056/NEJM199712113372406
  3. Thio CL, Thomas DL, Karacki P, Gao X, Marti D, Kaslow RA, et al. Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B virus infection. J Virol 2003; 77:12083-12087. https://doi.org/10.1128/JVI.77.22.12083-12087.2003
  4. Cha C, Dematteo RP. Molecular mechanisms in hepatocellular carcinoma development. Best Pract Res Clin Gastroenterol 2005;19:25-37. https://doi.org/10.1016/j.bpg.2004.11.005
  5. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004;11:97-107. https://doi.org/10.1046/j.1365-2893.2003.00487.x
  6. Cheong JY. Management of chronic hepatitis B in treatment- naive patients. Korean J Gastroenterol 2008;51:338-345.
  7. Park NH, Chung YH, Lee HS. Impacts of vaccination on hepatitis B viral infections in Korea over a 25-year period. Intervirology 2010;53:20-28. https://doi.org/10.1159/000252780
  8. Wieland SF, Eustaquio A, Whitten-Bauer C, Boyd B, Chisari FV. Interferon prevents formation of replication-competent hepatitis B virus RNA-containing nucleocapsids. Proc Natl Acad Sci U S A 2005;102:9913-9917. https://doi.org/10.1073/pnas.0504273102
  9. Robek MD, Wieland SF, Chisari FV. Inhibition of hepatitis B virus replication by interferon requires proteasome activity. J Virol 2002;76:3570-3574. https://doi.org/10.1128/JVI.76.7.3570-3574.2002
  10. Robek MD, Boyd BS, Wieland SF, Chisari FV. Signal trans duction pathways that inhibit hepatitis B virus replication. Proc Natl Acad Sci U S A 2004;101:1743-1747. https://doi.org/10.1073/pnas.0308340100
  11. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003;77:68-76. https://doi.org/10.1128/JVI.77.1.68-76.2003
  12. Lopes AR, Kellam P, Das A, Dunn C, Kwan A, Turner J, et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J Clin Invest 2008; 118:1835-1845. https://doi.org/10.1172/JCI33402
  13. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris) 2010;58:258-266. https://doi.org/10.1016/j.patbio.2009.11.001
  14. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S, et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. Embo J 1998;17:384-395. https://doi.org/10.1093/emboj/17.2.384
  15. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286:1735-1738. https://doi.org/10.1126/science.286.5445.1735
  16. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali- Krishna K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005;202:637-650. https://doi.org/10.1084/jem.20050821
  17. McNair AN, Kerr IM. Viral inhibition of the interferon system. Pharmacol Ther 1992;56:79-95. https://doi.org/10.1016/0163-7258(92)90038-2
  18. Liu SY, Sanchez DJ, Cheng G. New developments in the induction and antiviral effectors of type I interferon. Curr Opin Immunol 2011;23:57-64. https://doi.org/10.1016/j.coi.2010.11.003
  19. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67:227-264. https://doi.org/10.1146/annurev.biochem.67.1.227
  20. Kelly JM, Porter AC, Chernajovsky Y, Gilbert CS, Stark GR, Kerr IM. Characterization of a human gene inducible by alphaand beta-interferons and its expression in mouse cells. Embo J 1986;5:1601-1606.
  21. Porter AC, Chernajovsky Y, Dale TC, Gilbert CS, Stark GR, Kerr IM. Interferon response element of the human gene 6-16. Embo J 1988;7:85-92.
  22. Parker N, Porter AC. Identification of a novel gene family that includes the interferon-inducible human genes 6-16 and ISG12. BMC Genomics 2004;5:8. https://doi.org/10.1186/1471-2164-5-8
  23. Itzhaki JE, Barnett MA, MacCarthy AB, Buckle VJ, Brown WR, Porter AC. Targeted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet 1992; 2:283-287. https://doi.org/10.1038/ng1292-283
  24. Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. Transcriptional and posttranscriptional regulation of interferon- induced gene expression in human cells. Cell 1984;38: 745-755. https://doi.org/10.1016/0092-8674(84)90270-8
  25. Cheriyath V, Glaser KB, Waring JF, Baz R, Hussein MA, Borden EC. G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells. J Clin Invest 2007;117:3107-3117. https://doi.org/10.1172/JCI31122
  26. Tahara E Jr, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, et al. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother 2005;54:729-740. https://doi.org/10.1007/s00262-004-0645-2
  27. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 2003;31:3651-3653. https://doi.org/10.1093/nar/gkg605
  28. Ghislain JJ, Wong T, Nguyen M, Fish EN. The interferon-inducible Stat2:Stat1 heterodimer preferentially binds in vitro to a consensus element found in the promoters of a subset of interferon- stimulated genes. J Interferon Cytokine Res 2001; 21:379-388. https://doi.org/10.1089/107999001750277853
  29. Bluyssen AR, Durbin JE, Levy DE. ISGF3 gamma p48, a specificity switch for interferon activated transcription factors. Cytokine Growth Factor Rev 1996;7:11-17. https://doi.org/10.1016/1359-6101(96)00005-6
  30. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007;282:20059-20063. https://doi.org/10.1074/jbc.R700016200
  31. Wesoly J, Szweykowska-Kulinska Z, Bluyssen HA. STAT activation and differential complex formation dictate selectivity of interferon responses. Acta Biochim Pol 2007;54:27-38.
  32. Li X, Leung S, Burns C, Stark GR. Cooperative binding of Stat1-2 heterodimers and ISGF3 to tandem DNA elements. Biochimie 1998;80:703-710. https://doi.org/10.1016/S0300-9084(99)80023-6
  33. Yockell-Lelièvre J, Spriet C, Cantin P, Malenfant P, Heliot L, de Launoit Y, et al. Functional cooperation between Stat-1 and ets-1 to optimize icam-1 gene transcription. Biochem Cell Biol 2009;87:905-918. https://doi.org/10.1139/O09-055
  34. Jung HH, Lee J, Kim JH, Ryu KJ, Kang SA, Park C, et al. STAT1 and Nmi are downstream targets of Ets-1 transcription factor in MCF-7 human breast cancer cell. FEBS Lett 2005;579: 3941-3946. https://doi.org/10.1016/j.febslet.2005.06.011
  35. Shin HD, Park BL, Cheong HS, Yoon JH, Kim YJ, Lee HS. SPP1 polymorphisms associated with HBV clearance and HCC occurrence. Int J Epidemiol 2007;36:1001-1008. https://doi.org/10.1093/ije/dym093
  36. Cheong JY, Cho SW, Oh B, Kimm K, Lee KM, Shin SJ, et al. Association of interleukin-18 gene polymorphisms with hepatitis B virus clearance. Dig Dis Sci 2010;55:1113-1119. https://doi.org/10.1007/s10620-009-0819-z
  37. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009;41:591-595. https://doi.org/10.1038/ng.348
  38. Howell JA, Visvanathan K. A novel role for human leukocyte antigen-DP in chronic hepatitis B infection: a genomewide association study. Hepatology 2009;50:647-649. https://doi.org/10.1002/hep.23147
  39. Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. J Interferon Cytokine Res 2011; 31:173-181. https://doi.org/10.1089/jir.2010.0105
  40. O'Brien TR, Kohaar I, Pfeiffer RM, Maeder D, Yeager M, Schadt EE, et al. Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-DPA1 and HLA-DPB1 in normal human liver. Genes Immun 2011;12: 428-433. https://doi.org/10.1038/gene.2011.11
  41. Wang L, Wu XP, Zhang W, Zhu DH, Wang Y, Li YP, et al. Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control studies. PLoS One 2011;6:e17608. https://doi.org/10.1371/journal.pone.0017608
  42. Guo X, Zhang Y, Li J, Ma J, Wei Z, Tan W, et al. Strong influence of human leukocyte antigen (HLA)-DP gene variants on de velopment of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatology 2011;53:422-428. https://doi.org/10.1002/hep.24048
  43. Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M, Hosono N, et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet 2011;20:3884-3892. https://doi.org/10.1093/hmg/ddr301
  44. Shriner D, Vaughan LK, Padilla MA, Tiwari HK. Problems with genome-wide association studies. Science 2007;316:1840- 1842.
  45. Williams SM, Canter JA, Crawford DC, Moore JH, Ritchie MD, Haines JL. Problems with genome-wide association studies. Science 2007;316:1840-1842.
  46. Ott J. Association of genetic loci: replication or not, that is the question. Neurology 2004;63:955-958. https://doi.org/10.1212/WNL.63.6.955
  47. Ioannidis JP. Non-replication and inconsistency in the genome- wide association setting. Hum Hered 2007;64:203-213. https://doi.org/10.1159/000103512
  48. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA 2008;299:1335-1344. https://doi.org/10.1001/jama.299.11.1335
  49. Lasky-Su J, Lyon HN, Emilsson V, Heid IM, Molony C, Raby BA, et al. On the replication of genetic associations: timing can be everything! Am J Hum Genet 2008;82:849-858. https://doi.org/10.1016/j.ajhg.2008.01.018
  50. Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 2009;4:e5639. https://doi.org/10.1371/journal.pone.0005639

Cited by

  1. Coordinated regulation of autophagy and apoptosis determines endothelial cell fate during Dengue virus type 2 infection vol.397, pp.1-2, 2014, https://doi.org/10.1007/s11010-014-2183-3
  2. IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0132743
  3. Transcriptomic analysis of different stages of pigeon ovaries by RNA-sequencing vol.83, pp.7, 2016, https://doi.org/10.1002/mrd.22670
  4. Discovery of Key Genes in Dermatomyositis Based on the Gene Expression Omnibus Database pp.1557-7430, 2018, https://doi.org/10.1089/dna.2018.4256