• 제목/요약/키워드: Interferometers

검색결과 95건 처리시간 0.03초

Sirius: The KASI-SNU Optical Intensity Interferometer

  • Oh, Junghwan;Trippe, Sascha;Wagner, Jan;Byun, Do-young
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.58.3-58.3
    • /
    • 2019
  • Optical intensity interferometry, developed in the 1950s, is a simple and inexpensive method for achieving angular resolutions on microarcsecond scales. Its low sensitivity has limited intensity interferometric observations to bright stars so far. Substantial improvements are possible by using avalanche photodiodes (APDs) as light detectors. We present here the results of laboratory measurements with a prototype astronomical intensity interferometer using APDs in continuous ("linear") detection mode - arguably, the first of its kind. We used two interferometer configurations, one with zero baseline and one with variable baseline. Using a superluminous diode as light source, we unambiguously detected Hanbury Brown-Twiss photon-photon correlations at very high significance. From measuring the correlation as function of baseline, we measured the angular diameter of the light source, in analogy to the measurement of the angular diameter of a star. Our results demonstrate the possibility to construct large astronomical intensity interferometers that can address a multitude of astrophysical science cases.

  • PDF

Dual Fabry-Perot Interferometer to Improve the Color Purity of Displays

  • Keun Soo Shin;Jun Yong Kim;Yun Seon Do
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.191-199
    • /
    • 2023
  • We propose a dual Fabry-Perot interferometer (DFPI) structure that combines two Fabry-Perot interferometers. The structure is designed to have spectral peaks in the red, green, and blue regions simultaneously, to be applicable to R, G, and B subpixels without any patterning process. The optimized structure has been fabricated on a glass substrate using a thermal evaporation technique. When the DFPI structure was attached to the quantum-dot color-conversion layer, the full width at half maximum values of the green and red spectra decreased by 47.29% and 51.07% respectively. According to CIE 1931 color space, the DFPI showed a 37.66% wider color gamut than the standard RGB color coordinate. Thus it was experimentally proven that the proposed DFPI structure improved color purity. This DFPI structure will be useful in realizing a display with high color purity.

미소 진폭 기계진동의 Synthetic-heterodyne 간섭측정에 대한 연구 (Synthetic-heterodyne interferometry for measuring extremely small amplitude of mechanical vibrations)

  • 강성구;라종필;윤희선;박기환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.373-378
    • /
    • 2007
  • On the homodyne interferometers, high pass filter(HPF) is usually used to remove the electrical noise in the interferent signal. Heterodyne interferometer has modulating frequency is shifted in the frequency region where the electrical noise effect is minimized by HPF effect. However, on the homodyne interferometer, the interferent DC-component of homodyne interferometer is unfortunately eliminated by using a HPF because its shifted frequency does not exist. Moreover, this effect is more serious the vibration amplitude is smaller. So, when unstable interferent signals via HPF are demodulated, a velocity is distorted. In this work, the mathematical explanation for the distortion of the homodyne interferent signal using the HPF is given. New synthetic heterodyne LDV based on the homodyne interferometer by exciting the reference mirror is proposed for the cancellation of the distortion. The optimum excitation condition of the mirror to compensate the distortion is discussed. The numerical simulation using the commercial MATLAB code is provided to show the effect of the proposed synthetic heterodyne LDV. The experimental results are also given and the effect of the proposed LDV is discussed.

  • PDF

Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography

  • Park, Jae-Seok;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.380-385
    • /
    • 2011
  • Common-path interferometers are widely used for endoscopic optical coherence tomography (OCT) because an arbitrary arm length can be chosen for the endoscopic imaging probe. However, the scheme suffers from the limited range of the sample position distance from the end of the imaging probe because the position between the reference reflector and the sample is limited by the optical path-length difference (OPD) to induce an interference signal. In this study, we developed a novel method for compensating the arbitrary sample position in common-path swept-source OCT by adding an extra Mach-Zehnder interferometer in the post-path of the interfered optical signal. Theoretical analysis and an experimental demonstration of imaging depth tuning for the flexible sample position of an endoscopic OCT image are discussed. After post-tuning of sample position distance, the positioning limitation between the reference reflector and the sample can be solved for various sample positions over a range of 26 mm for the cross-sectional images of a fish eye sample.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

길이 소급성을 갖는 AFM을 이용한 150nm 피치 측정 (150 nm Pitch Measurement using Metrological AFM)

  • 진종한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.264-267
    • /
    • 2003
  • Pitch measurements of 150 nm pitch one-dimensional grating standards were carried out using an contact mode atomic force microscopy(C-AFM) with a high resolution three-axis laser interferometer. It was called as 'Nano-metrological AFM' In Nano-metrological AFM, Three laser interferometers were aligned well to the end of AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$-stablilzed He-Ne laser at a wavelength of 633 nm. So, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM has a traceability to the length standard directly. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement(GUM). The Primary source of uncertainty in the pitch-measurements was derived from repeatability of pitch-measurement, and its value was approx 0.186 nm. Expanded uncertainty(k=2) of less than 5.23 nm was obtained. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

  • PDF

사냑간섭계 원리를 이용한 자이로의 원리와 발전 전망 (Principles and Prospects of Sagnac Interferometer Gyroscopes)

  • 심규민
    • 한국광학회지
    • /
    • 제23권5호
    • /
    • pp.203-210
    • /
    • 2012
  • 사냑간섭계 원리를 이용한 자이로는 연구의 계기가 된 발명 또는 연구시기에 따라서 크게 3세대로 구분되어질 수 있다. 사냑간섭계 원리를 이용한 첫 번째 자이로인 링레이저 자이로는 레이저의 발명에 의해서 1960년대 부터 연구되어 왔으며, 사냑간섭계 원리를 이용한 2세대 자이로인 광섬유 자이로는 통신용 광섬유의 발명에 의해서 1970년대부터 연구되어 왔다. 원자의 파동성이 입증된 1990년대 후반에는 차기세대 자이로 개발을 위한 원자간섭계 연구가 시작되었다. 본 논문은 이러한 세 분류의 사냑간섭계 원리를 이용한 자이로의 동작원리, 응용분야, 그리고 발전전망에 대하여 논의하였다.

Modified Sub-aperture Stitching Algorithm using Image Sharpening and Particle Swarm Optimization

  • Chen, Yiwei;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.341-344
    • /
    • 2014
  • This study proposes a modified sub-aperture stitching algorithm, which uses an image sharpening algorithm and particle swarm optimization to improve the stitching accuracy. In sub-aperture stitching interferometers with high positional accuracy, the high-frequency components of measurements are more important than the low-frequency components when compensating for position errors using a sub-aperture stitching algorithm. Thus we use image sharpening algorithms to strengthen the high-frequency components of measurements. When using image sharpening algorithms, sub-aperture stitching algorithms based on the least-squares method easily become trapped at locally optimal solutions. However, particle swarm optimization is less likely to become trapped at a locally optimal solution, thus we utilized this method to develop a more robust algorithm. The results of simulations showed that our algorithm compensated for position errors more effectively than the existing algorithm. An experimental comparison with full aperture-testing results demonstrated the validity of the new algorithm.

Pitch Measurement of 150 nm 1D-grating Standards Using an Nano-metrological Atomic Force Microscope

  • Jonghan Jin;Ichiko Misumi;Satoshi Gonda;Tomizo Kurosawa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.19-25
    • /
    • 2004
  • Pitch measurements of 150 nm one-dimensional grating standards were carried out using a contact mode atomic force microscopy with a high resolution three-axis laser interferometer. This measurement technique was named as the 'nano-metrological AFM'. In the nano-metrological AFM, three laser interferometers were aligned precisely to the end of an AFM tip. Laser sources of the three-axis laser interferometer in the nano-metrological AFM were calibrated with an I$_2$ stabilized He-Ne laser at a wavelength of 633 nm. Therefore, the Abbe error was minimized and the result of the pitch measurement using the nano-metrological AFM could be used to directly measure the length standard. The uncertainty in the pitch measurement was estimated in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). The primary source of uncertainty in the pitch-measurements was derived from the repeatability of the pitch-measurements, and its value was about 0.186 nm. The average pitch value was 146.65 nm and the combined standard uncertainty was less than 0.262 nm. It is suggested that the metrological AFM is a useful tool for the nano-metrological standard calibration.

SOLAR CYCLE VARIATION OF UPPER THERMOSPHERIC TEMPERATURE OVER KING SEJONG STATION, ANTARCTICA

  • Chung, Jong-Kyun;Won, Young-In;Kim, Yong-Ha;Lee, Bang-Yong;Kim, Jhoon
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.241-248
    • /
    • 2000
  • A groung Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0nm) from the thermosphere (about 250km) at King Sejong station (KSS, geographic: $62.22^{\circ}$S, $301.25^{\circ}$E; geomagnetic: $50.65^{\circ}$S, $7.51^{\circ}$E), Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400K in 1989 and 800K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  • PDF