• Title/Summary/Keyword: Interference-aware

Search Result 74, Processing Time 0.027 seconds

SIC-Aware Relay Transceiving Filter Design for Multiuser Two-way Relaying Systems (다중 사용자 양방향 릴레이 시스템을 위한 자가 간섭 소거 인지 릴레이 송수신 필터 설계)

  • Park, Jin-Bae;Wang, Jin-Soo;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.64-72
    • /
    • 2012
  • We consider multiuser multiple antenna two-way relaying systems in which all users exchange their data with their counterparts with the help of a relay. The systems complete all data exchanges in two time phases called multiple access phase and broadcasting phase for spectral efficiency and therby require an effective scheme reducing self-interference (SI) and multiuser interference (MUI). Different from the conventional scheme suppressing both SI and MUI at the relay, the proposed scheme adopts SI cancelation (SIC) at the users and renders the relay to suppress the MUI mainly considering the SIC output. We analyze the symbol error rate (SER) and the achievable diversity order of the proposed scheme when the multiple access phase is dominant in the performance and obtain simulation results on the SER and the sum rate under various conditions. The results show that the proposed scheme improves the symbol error rate and the sum rate remarkably at the cost of complexity increase.

Adaptive Resource Allocation for Traffic Flow Control in Hybrid Networks

  • Son, Sangwoo;Rhee, Byungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.38-55
    • /
    • 2013
  • Wireless network systems provide fast data transmission rates and various services to users of mobile devices such as smartphones and smart pads. Because many people use high-performance mobile devices, the use of real-time multimedia services is increasing rapidly. However, the preoccupation of resources by real-time traffic users is causing harm to other services-for example, frequent call interference, lowered service quality, and poor network performance. This paper suggests a resource allocation algorithm for effective traffic service support in a hybrid network. The main objective is to obtain an optimum value of data rates by comparing user requirements with the amount of resources that can be allocated. A new mechanism based on Adaptive-Quality of Service (QoS) and a monitoring system based on Queue-Aware are proposed. Adaptive-QoS supports effective resource control according to the type of traffic service, and the monitoring system based on Queue-Aware measures the amount of resources in order to calculate the maximum that can be allocated. We apply our algorithm to a test system and use Qualnet 4.5.1 to evaluate its performance.

QoSCM: QoS-aware Coded Multicast Approach for Wireless Networks

  • Mohajer, Amin;Barari, Morteza;Zarrabi, Houman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5191-5211
    • /
    • 2016
  • It is essential to satisfy class-specific QoS constraints to provide broadband services for new generation networks. The present study proposes a QoS-driven multicast scheme for wireless networks in which the transmission rate and end-to-end delay are assumed to be bounded during a multiple multicast session. A distributed algorithm was used to identify a cost-efficient sub-graph between the source and destination which can satisfy QoS constraints of a multicast session. The model was then modified as to be applied for wireless networks in which satisfying interference constraints is the main challenge. A discrete power control scheme was also applied for the QoS-aware multicast model to accommodate the effect of transmission power level based on link capacity requirements. We also proposed random power allocation (RPA) and gradient power allocation (GPA) algorithms to efficient resource distribution each of which has different time complexity and optimality levels. Experimental results confirm that the proposed power allocation techniques decrease the number of unavailable links between intermediate nodes in the sub-graph and considerably increase the chance of finding an optimal solution.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.

SLNR-based User Scheduling in Multi-cell networks: from Multi-antenna to Large-Scale Antenna System

  • Li, Yanchun;Zhu, Guangxi;Chen, Hua;Jo, Minho;Liu, Yingzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.945-964
    • /
    • 2014
  • In this paper, we investigate the performance of Signal to Leakage and Noise Radio (SLNR) based user scheduling in uplink of multi-cell with large-scale antenna system. Large antenna array is desired to improve the performance in future system by providing better beamforming capability. However, some studies have found that the signal channel is 'hardened' (becomes invariant) when the antenna number goes extremely large, which implies that the signal channel aware user scheduling may have no gain at all. With the mathematic tool of order statistics, we analyzed the signal and interference terms of SLNR in a homogeneous multicell network. The derived distribution function of signal and interference shows that the leakage channel's variance is much more influential than the signal channel's variance in large-scale antenna regime. So even though the signal channel is hardened, the SLNR-based scheduling can achieve remarkable multiuser diversity (MUD) gain due to the fluctuation of the uplink leakage channel. By providing the final SINR distribution, we verify that the SLNR-based scheduling can leverage MUD in a better way than the signal channel based scheduling. The Monte Carlo simulations show that the throughput gain of SLNR-based scheduling over signal channel based scheduling is significant.

A context-Aware Smart Home Control System based on ZigBee Sensor Network

  • Khan, Murad;Silva, Bhagya Nathali;Jung, Changsu;Han, Kijun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1057-1069
    • /
    • 2017
  • The applications of Wireless Sensor Networks (WSN) are progressively adopting for various smart home services such as home automation, controlling smart home household appliances, constrained application services in a smart home, etc. However, enabling a seamless and ubiquitous WSN communication between the smart home appliances is still a challenging job. Therefore, in this paper, we propose a smart home control system using an Actuator based ZigBee networking (AZNET). The working of the proposed system is further divided into three phases, 1) an interference avoidance system is adopted to mitigate the effect of interference caused due to the co-existence of IEEE 802.11x based wireless local area networks (WLAN) and WSN, 2) a sensor-based smart light control system is used to fulfill the light requirement in the smart home using the sunlight with light source, and 3) an autonomous home management system is used to regulate the usage time of the electronic appliances in the smart home. The smart is tested in real time environment to use the sunlight with light sources in a various time of the day. Similarly, the performance of the proposed smart home is verified through simulation using C# programming language. The results and analysis revealed that the proposed smart home is less affected by the interference and efficient in reducing the energy consumption of the appliances available in the smart home scenario.

The Effect of Multiple Energy Detector on Evidence Theory Based Cooperative Spectrum Sensing Scheme for Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.295-309
    • /
    • 2016
  • Spectrum sensing is an essential function that enables cognitive radio technology to explore spectral holes and resourcefully access them without any harmful interference to the licenses user. Spectrum sensing done by a single node is highly affected by fading and shadowing. Thus, to overcome this, cooperative spectrum sensing was introduced. Currently, the advancements in multiple antennas have given a new dimension to cognitive radio research. In this paper, we propose a multiple energy detector for cooperative spectrum sensing schemes based on the evidence theory. Also, we propose a reporting mechanism for multiple energy detectors. With our proposed system, we show that a multiple energy detector using a cooperative spectrum sensing scheme based on evidence theory increases the reliability of the system, which ultimately increases the spectrum sensing and reduces the reporting time. Also in simulation results, we show the probability of error for the proposed system. Our simulation results show that our proposed system outperforms the conventional energy detector system.

Spoofing Signal Detection Using Accelerometers in IMU and GPS Information (IMU 가속도계 센서와 GPS 정보를 이용한 기만신호 검출)

  • Kwon, Keum-Cheol;Yang, Cheol-Kwan;Shim, Duk-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1273-1280
    • /
    • 2014
  • This paper considers a GPS anti-spoofing problem. Spoofing is an intentional interference that mislead the GNSS receiver. The spoofing attack is very significant since the target receiver is not aware of being attacked from spoofing. Accelerometers can be used to detect the spoofing signal by being compared with the acceleration obtained from GPS information using Kalman filter. In this paper we propose an N by N-point average and M-point window algorithm to detect GPS spoofing by using accelerometers and GPS outputs. The performance of the proposed algorithm is analyzed using actual vehicle trajectory and spoofing trajectory generated from INS and GPS toolbox for simulation.

Interference Aware Channel Estimation for Wireless Ad Hoc Networks (무선 애드혹 네트워크에서의 간섭 제어 채널 추정 기법)

  • Lee, Byungju;Park, Sunho;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.27-28
    • /
    • 2013
  • 본 논문에서는 간섭 제한 적인 상황에서 지정된 채널을 추정해야 하는 실제적인 무선 애드혹 네트워크에서 비모수 선형 MMSE 필터 기반의 간섭 제어 채널 추정 기법을 사용하여 네트워크 성능을 개선시키는 새로운 기법을 제안한다. 제안하는 채널 추정 기법은 간섭의 정도에 따라 노드를 활성화 시키고 지정된 채널 추정을 한다. 실제적인 무선 애드혹 네트워크 모의실험을 통해 제안된 기법이 기존의 채널 추정 기법에 비해 상당한 전송 캐패시티 이득을 얻을 수 있음을 확인할 수 있다.

  • PDF

Design Methodologies for Reliable Clock Networks

  • Joo, Deokjin;Kang, Minseok;Kim, Taewhan
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.257-266
    • /
    • 2012
  • This paper overviews clock design problems related to the circuit reliability in deep submicron design technology. The topics include the clock polarity assignment problem for reducing peak power/ground noise, clock mesh network design problem for tolerating clock delay variation, electromagnetic interference aware clock optimization problem, adjustable delay buffer allocation and assignment problem to support multiple voltage mode designs, and the state encoding problem for reducing peak current in sequential elements. The last topic belongs to finite state machine (FSM) design and is not directly related to the clock design, but it can be viewed that reducing noise at the sequential elements driven by clock signal is contained in the spectrum of reliable circuit design from the clock source down to sequential elements.