• Title/Summary/Keyword: Interference Measurement

Search Result 611, Processing Time 0.035 seconds

Radial Contact Force Measurement of Lip Seals with a Split Shaft Device (스플릿트샤프트 장치를 이용한 립실의 접촉력측정)

  • Kim, Wan-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.158-162
    • /
    • 1996
  • A split shaft device is commonly used to measure the radial force of lip seals. The radial force measured with this device includes some inevitable error. This error is caused by the fact that the split shafts cannot maintain a perfect circle when the interference becomes larger or smaller than some initial interference. In this study, a theoretical model for the calculation of the radial contact force has been carried out, and an explicit equation for the measurement error as a function of the initial interference and the interference to be measured has been obtained. The error when the interference is small is not dependent upon the material properties and the shape of the lip seal, but rather upon the amplitude of the initial interference and the interference to be measured. When the interference is larger or smaller than the initial interference, the measured contact force is always underestimated or overestimated.

  • PDF

Spread Spectrum Impedance Measurements for Rejecting Interference (간섭제거를 위한 대역확산 임피던스 측정)

  • Kang, Hyun-Kag;Jang, Yong-Gyu;Hwang, In-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.75-77
    • /
    • 2005
  • When measuring impedance of electronic component and so on, even the small size can reject the interference to shielding object. But, the interference through human body is grown when measuring bioimpedance without establishing shield specially. Consequently, when measuring bioimpedance in this paper, it proposed impedance measurement method to take advantage of spread spectrum technology, so that can reject the interference without establishing shield specially. Spread spectrum impedance measurement method to propose in this paper can reject the interference signal that occurring from medical instruments in the human body, the interference signal that is flowed in from surrounding environment when measuring impedance. It improved SJR(signal to jamming ratio) about 22dB than conventional method that actually realize and experiment spread spectrum impedance measurement method.

  • PDF

Compensation of Electric Field Interference for Fiber-optic Voltage Measurement System

  • Cho, Jae-Kyong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2008
  • In this paper, we analyze the errors associated with electric field interference for fiber-optic voltage sensors working in a three-phase electric system. For many practical conductor arrangements, the electric filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of 1 %.

Nonlinear Diffusion and Structure Tensor Based Segmentation of Valid Measurement Region from Interference Fringe Patterns on Gear Systems

  • Wang, Xian;Fang, Suping;Zhu, Xindong;Ji, Jing;Yang, Pengcheng;Komori, Masaharu;Kubo, Aizoh
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.587-597
    • /
    • 2017
  • The extraction of the valid measurement region from the interference fringe pattern is a significant step when measuring gear tooth flank form deviation with grazing incidence interferometry, which will affect the measurement accuracy. In order to overcome the drawback of the conventionally used method in which the object image pattern must be captured, an improved segmentation approach is proposed in this paper. The interference fringe patterns feature, which is smoothed by the nonlinear diffusion, would be extracted by the structure tensor first. And then they are incorporated into the vector-valued Chan-Vese model to extract the valid measurement region. This method is verified in a variety of interference fringe patterns, and the segmentation results show its feasibility and accuracy.

High resolution Linear Encoder Using Interference Fringe (레이저의 간섭무늬를 이용한 리니어 엔코더에 관한 연구)

  • 박윤창
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-135
    • /
    • 1999
  • The main scale of linear encoder greatly effects on the precision of displacement measurement. Especially when needing the long range measurement the length of main scale should be increased accordingly. In this paper we propose a linear encoder that uses laser interference pattern as main scale for long range measurement. The linear encoder is similar to Michelson interferometer excepting that the reference mirror is tilted so as to obtain interference fringe pattern and a grating panel is attached on a quadratic photo diodes. Four kinds of grating having phase difference of 0. $\pi$/4, $\pi$/2, 3$\pi$/4 are arranged on the panel. The experimental results show that signals of quadratic photo diode A, B, {{{{ {-}atop {A } }}}} and {{{{ {- } atop {B } }}}} are cosine wavelike and successive signals have phase difference of $\pi$/4 each other. So the proposed method can achieve improved measurement resolution.

  • PDF

Bearing-only Localization of GNSS Interference using Iterated Consider Extended Kalman Filter

  • Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.221-227
    • /
    • 2020
  • In this paper, the Iterated Consider Extended Kalman Filter (ICEKF) is proposed for bearing-only localization of GNSS interference to improve the estimation performance and filter consistency. The ICEKF is an extended version of Consider KF (CKF) for Iterated EKF (IEKF) to consider an effect of bearing measurement bias error to filter covariance. The ICEKF can mitigate the EKF divergence problem which can occur when linearizing the nonlinear bearing measurement by a large initial state error. Also, it can mitigate filter inconsistency problem of EKF and IEKF which can occur when a weakly observable bearing measurement bias error state is not included in filter state vector. The simulation result shows that the localization error of the ICEKF is smaller than the EKF and IEKF, and the Root Mean Square (RMS) estimation error of ICEKF matches the covariance of filter.

Measurement Method of Linear Expansion Coefficient for Solid Matter using Michelson Interferometer (Michelson 간섭계에 의한 고체의 선팽창계수 측정방법)

  • Kim, Hong-Gyun;Kim, Young-Sun
    • Journal of Engineering Education Research
    • /
    • v.16 no.2
    • /
    • pp.24-30
    • /
    • 2013
  • This paper deals with the measurement theory and technique of linear expansion coefficient for solid material using Michelson interferometer. The Michelson interferometer produces interference fringes by splitting a beam of monochromatic light so that one beam strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought back together, an interference pattern results. Precise distance measurements until a quarter of wave length can be made with the Michelson interferometer by moving the mirror and counting the interference fringes which move by a photo diode. This paper represents the application of Michelson interferometer for measuring infinitesimal length system and shows the measurement method of linear expansion coefficients for various materials like copper, aluminum and iron. the results are good agreement with theoretical value within margin of error for each materials.

A study of the interference measurement analysis between 3.4125GHz band broadcasting system and UWB wireless communication system

  • Song, Hong-Jong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Ultra wideband (UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC (Direct Current) to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely an orthogonal frequency division multiplex UWB source and an impulse radio UWB source, to a broadcasting transmission system. The S/N ratio degradation of broadcasting system is presented. From these experimental results, we show that in all practical cases UWB system can be coexisted 35m distance in-band broadcasting network.

  • PDF

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.