• Title/Summary/Keyword: Interference Control

Search Result 1,149, Processing Time 0.028 seconds

Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.508-522
    • /
    • 2011
  • Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions.

Distributed Collision-Resolvable Medium Access Control for Wireless LANs with Interference Cancellation Support

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2691-2707
    • /
    • 2014
  • Medium access control is critical in wireless networks for efficient spectrum utilization. In this paper, we introduce a novel collision resolution method based on the technique of known interference cancellation, and propose a new MAC protocol named as CR-MAC, in which AP tries to decode all the collided data packets by combining partial retransmissions and known interference cancellation. As the collided transmissions are fully utilized, less retransmission is required, especially in a crowded network. The NS-2simulation and MATLAB numerical results show that, under various network settings, CR-MAC performs much better than the IEEE 802.11 DCF in terms of the aggregation throughput and the expected packet delay.

Dynamic Coverage Control to Improve Channel Utilization in IEEE 802.11 (IEEE 802.11에서 채널 이용율을 높이기 위한 동적 커버영역 제어)

  • 양덕용;이태진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.195-199
    • /
    • 2003
  • BEE 802.11 Wireless LAN protocol uses fixed transmission power. It does not consider a power control mechanism based on the distance between the transmitter and the receiver in order to improve overall channel utilization. In home environment, where stations generally lie around an AP, the AP is subject to use transmission power more than it needs. And wireless LAN stations may require different minimal desired received power. If there are many adjacent BSSs in densely populated WLAN area, they might cause RF interference to one another. In this paper we focus on the improvement of aggregate utilization by mitigating RF interference among BSSs. We show that RF interference by APs can be reduced by controlling transmission power using Link Margin information. The reduced interference will then lead to the increased aggregate throughput which is efficient resource utilization.

  • PDF

Direct-band spread system for neural network with interference signal control (직접 대역 확산 시스템에서 신경망을 이용한 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1372-1377
    • /
    • 2013
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

Application of ANFIS Power Control for Downlink CDMA-Based LMDS Systems

  • Lee, Ze-Shin;Tsay, Mu-King;Liao, Chien-Hsing
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.182-192
    • /
    • 2009
  • Rain attenuation and intercell interference are two crucial factors in the performance of broadband wireless access networks such as local multipoint distribution systems (LMDS) operating at frequencies above 20 GHz. Power control can enhance the performance of downlink CDMA-based LMDS systems by reducing intercell interference under clear sky conditions; however, it may damage system performance under rainy conditions. To ensure robust operation under both clear sky and rainy conditions, we propose a novel power-control scheme which applies an adaptive neuro-fuzzy inference system (ANFIS) for downlink CDMA-based LMDS systems. In the proposed system, the rain rate and the number of users are two inputs of the fuzzy inference system, and output is defined as channel quality, which is applied in the power control scheme to adjust the power control region. Moreover, ITU-R P.530 is employed to estimate the rain attenuation. The influence of the rain rate and the number of users on the distance-based power control (DBPC) scheme is included in the simulation model as the training database. Simulation results indicate that the proposed scheme improves the throughput of the DBPC scheme.

  • PDF

A User Scheduling with Interference-Aware Power Control for Multi-Cell MIMO Networks (다중안테나 다중셀 네트워크에서 간섭인지 기반 전력제어 기술을 이용한 사용자 스케쥴링)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1063-1070
    • /
    • 2015
  • In this paper, we propose a distributed user scheduling with transmit power control based on the amount of generating interference to other base stations (BSs) in multi-cell multi-input multi-output (MIMO) networks. Assuming that the time-division duplexing (TDD) system is used, the interference channel from users to other cell BSs is obtained at each user. In the proposed scheduling, each user first generates a transmit beamforming vector by using singular value decompositon (SVD) over MIMO channels and reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest effective channel gains among users, which reflects the adjusted power of users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

A Study on the Hierarchical Cell Structure for Next Generation Mobile Communication Using HAPS (HAPS를 이용한 차세대 이동 통신용 계층적 셀 구조 연구)

  • Kang Young-Heung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.602-609
    • /
    • 2005
  • In this paper, the performance of HCS (hierarchical cell structure), which consists of macro-cell and micro-cell, has been analyzed by assuming that the cells in HAPS (high altitude plat(on station) are tessellated to provide wide coverage, control the co-channel interference and give the higher spectrum efficiency. Since the outside-cell interference factor is well blown to analyze the effects of interference between cells, the effects of interference from the micro-cells into the macro-cells has been estimated using the factor as a performance estimation of HCS in HAPS. HCS served by HAPS can be realized by permitting the suitable power control and the proper number of users in micro-cell because the interference from the micro-cell into the macro-cell is not a function of the distance between cells but a function of the power control and the number of users.

A Study on the Analysis of UWB Interference to WiMAX and Mitigation Method of Transmit Power Control (초광대역 시스템에 의한 WiMAX로의 간섭 및 송신 전력 제어 간섭 저감 방법 해석 연구)

  • Yoon, Young-Keun;Ju, Sang-Ho;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1077-1082
    • /
    • 2007
  • This paper presents the analysis of the potential ultra-wideband(UWB) interference to WiMAX at 3.5 GHz bands and the mitigation method using transmit power control(TPC) of UWB system. UWB interference effect is evaluated with WiMax's outage probability over UWB density when multiple UWB systems and single WiMAX receiver distribute in unit area of 1$km^2$, When UWB distribution density is 20$devices/km^2$ and the dynamic range of TPC is 30 dB, UWB interference effect with TPC is decreased by 42 % rather than that without mitigation scheme. Finally, we describe that the proposed TPC is an effective method to mitigate UWB interference to WiMAX.

An Interference Coordination Technique Utilizing Sub-Arrays and Its Performance in Cellular Systems (부 어레이 빔포밍을 활용하는 간섭 제어 기법 및 셀룰러 시스템에서의 성능 평가)

  • Kang, Hosik;Lee, Donghyun;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.653-663
    • /
    • 2014
  • To cope with an increasing amount of data traffic, research efforts are being made to maximize the data rate by reducing the interference between the transmission nodes. This paper also focuses on interference control schemes utilizing antenna sub-array beam-forming. The first scheme relies on horizontal beam rotation which utilizes three types of narrow beam patterns. Different beam patterns are applied to transmit signals in rotating fashion to control the interference. The second scheme is based on user-specific sub-array beamforming, which uses the precoding matrix based on users' location and controls the amount of interference in the multi-user environment. The performance of the proposed schemes is evaluated using the computer simulation to demonstrate the performance enhancement.

Intentional GNSS Interference Detection and Characterization Algorithm Using AGC and Adaptive IIR Notch Filter

  • Yang, Jeong Hwan;Kang, Chang Ho;Kim, Sun Young;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • A Ground Based Augmentation System (GBAS) is an enabling technology for an aircraft's precision approach based on a Global Navigation Satellite System (GNSS). However, GBAS is vulnerable to interference, so effective GNSS interference detection and mitigation methods need to be employed. In this paper, an intentional GNSS interference detection and characterization algorithm is proposed. The algorithm uses Automatic Gain Control (AGC) gain and adaptive notch filter parameters to classify types of incoming interference and to characterize them. The AGC gain and adaptive lattice IIR notch filter parameter values in GNSS receivers are examined according to interference types and power levels. Based on those data, the interference detection and characterization algorithm is developed and Monte Carlo simulations are carried out for performance analysis of the proposed method. Here, the proposed algorithm is used to detect and characterize single-tone continuous wave interference, swept continuous wave interference, and band-limited white Gaussian noise. The algorithm can be used for GNSS interference monitoring in an excessive Radio Frequency Interference environment which causes loss of receiver tracking. This interference detection and characterization algorithm will be used to enhance the interference mitigation algorithm.