• Title/Summary/Keyword: Interfacial temperature

Search Result 616, Processing Time 0.03 seconds

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Study on Filler Effects of High Temperature Glass Sealant (고온용 유리 봉합재의 filler 첨가효과)

  • 손용배;김상우;김민호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • The effects of glass composition on the wettability and reactivity with $ZrO_2$substrate was evaluated and fabrication variables and glass compositions was investigated. Various glass compositions was investigated. Alkaline earth silicate glass show good wettability and lower viscosity and crystallization of glass could be prevented by $B_2O_3$.The sealant glass begin to wet on $ZrO_2$substrate below $900^{\circ}C$ and porosity occurred in various glass compositions, the crystallization and porosity in the glass could be prevented by the addition of flux into glass composition. But flowability and reactivity of glass with $ZrO_2$substrate was enhanced. Processing variables should be optimized to reduce the porosity by enhancing the sintering of glass powder. Many silicate glasses were investigated for the applications of high temperature sealants. Wetting and bonding of glass was good enough to seal together between $ZrO_2$and other ceramic components of SOFC. But porosity and reaction layer were occurred in the sealant glass. It will be possible to produce glass sealant without porosity and reaction layer at the interface by optimization of processing variable and modify the glass compositions. In present study, wettability of glass-filler composite was investigated. The porosity, shape of filler and interfacial reactions of sealant glass with fillers were examined.

  • PDF

Failure Characteristics of Carbon/BMI Sandwich Composite Joint under Pull-out Loading (풀아웃 하중을 받는 카본/BMI 샌드위치 복합재 체결부 파손특성 연구)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Sim, Jae-Hoon;Jung, Young-In
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • The purpose of this paper is to investigate failure characteristics of Carbon/BMI-Nomex honeycomb sandwich on design parameters. A total of 6 types sandwich specimens were manufactured according to core height, face thickness and density, and environmental condition were applied to evaluate temperature and humidity effects of one of these specimens. The test results show that the core shear buckling loads was commonly observed in all specimens except for the joint with density of $64kg/m^3$. After core shear buckling, however, the joint carried additional loads over the buckling loads and then finally failed in the upper face and lower face at the same time. In the case of specimen having high stiffness, the maximum failure load was low due to interfacial failure of the upper face and core without initial core shear buckling. The ETW1 and ETW2 conditions, which were carried out to evaluate the environmental condition of the sandwich specimen, show an initial failure mode which was significantly different from RTD condition. Also, the ETW2 condition with increased temperature under the same humidity shows that the core shear buckling load was 18% less than ETW1 condition.

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

Cure and Mechanical Behaviors of Cycloaliphatic/DGEBA Epoxy Blend System using Electron-Beam Technique (전자선 조사에 의한 고리지방족/DGEBA 에폭시 블렌드 시스템의 경화 및 기계적 특성)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • 4-Vinyl-1-cyclohexene diepoxide (VCE)/diglycidyl ether of bisphenol-A (DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. The effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system vaned within 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor ($_{4}$) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chain structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T$\_$max/), and decomposition activation energy (E$\_$d/) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum $_{4}$ value showed at mixing ratio of 40:60 wt% in this blend system. in this blend system.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Numerical Analysis of Thermo-mechanical Stress and Cu Protrusion of Through-Silicon Via Structure (수치해석에 의한 TSV 구조의 열응력 및 구리 Protrusion 연구)

  • Jung, Hoon Sun;Lee, Mi Kyoung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • The through-silicon via (TSV) technology is essential for 3-dimensional integrated packaging. TSV technology, however, is still facing several reliability issues including interfacial delamination, crack generation and Cu protrusion. These reliability issues are attributed to themo-mechanical stress mainly caused by a large CTE mismatch between Cu via and surrounding Si. In this study, the thermo-mechanical reliability of copper TSV technology is investigated using numerical analysis. Finite element analysis (FEA) was conducted to analyze three dimensional distribution of the thermal stress and strain near the TSV and the silicon wafer. Several parametric studies were conducted, including the effect of via diameter, via-to-via spacing, and via density on TSV stress. In addition, effects of annealing temperature and via size on Cu protrusion were analyzed. To improve the reliability of the Cu TSV, small diameter via and less via density with proper via-to-via spacing were desirable. To reduce Cu protrusion, smaller via and lower fabrication temperature were recommended. These simulation results will help to understand the thermo-mechanical reliability issues, and provide the design guideline of TSV structure.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF