• Title/Summary/Keyword: Interfacial material

Search Result 570, Processing Time 0.034 seconds

Development of Numerical Tool considering Interfacial Fracture Behavior in Repaired RC Structure (보수.보강된 RC 구조물의 경계면 파괴를 고려한 수치해석 기법 개발)

  • 임윤묵;김문겸;신승교;고태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.553-558
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the interfacial fracture behavior in repaired structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are considered as quais-brittle materials, and steel plate as a repair material and reinforcement are modeled as elasto-plastic materials. The behavior of repaired reinforced concrete structures under flexural loading conditions is numerically simulated, and compaired with experimental results. The strengthening effect according to the length and thickness of the repair material is studied and rip-off, debonding and rupture failure mechanism of interface between substrate and repair materials are detected. It is shown that the interface properties affect on the mechanical behavior of repaired structures. Therefore, the developed numerical method using axial deformation link elements can be used for determining the strengthening effects and failure mechanism of repaired structures.

  • PDF

A Study on the Improvement of Stress Field Analysis in a Domain Composed of Dissimilar Materials

  • Song, Kee-Nam;Lee, Jin-Seok
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.202-211
    • /
    • 1998
  • Interfacial stresses at two-material interfaces and initial displacement field over the entire domain are obtained by modifying the potential energy functional with a penalty function, which enforces continuity of the stresses at the interface of two materials. Based on the initial displacement field and interfacial stresses, a new methodology to generate a continuous stress field over the entire domain has been proposed by combining the modified projection method of stress-smoothing and Loubignac's iterative method of improving the displacement field. Stress analysis is carried out on two examples made of dissimilar materials : one is a two-material cantilever composed of highly dissimilar materials and the other is a zirconium-lined cladding tube made of slightly dissimilar materials. Results of the analysis show that the proposed method provides an improved continuous stress field over the entire domain, and accurately predicts the nodal stresses at the interface, while the conventional displacement-based finite element method produces significant stress discontinuities at the interface. In addition, the total strain energy evaluated from the improved continuous stress field converges to the exact value in a few iterations.

  • PDF

The Removal of Inclusions in Molten Steel by Coating Materials for Tundish (턴디쉬용 코팅재에 의한 강중 개재물 저감효과)

  • 조문규;이석근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • A MgO-CaO-based coating material for ferrous melt refining is applied to the tundish operation for mol-ten steel having low carbon. The changes in the total oxygen content insoluble aluminum content and the content of inclusions in molten steel during tundish operation were measured at the pouring part strand of tundish and mold. On the basis of the experimental results the interfacial reaction occurring between the coating materials and the molten steel in tundish was discussed and compared with the theoretical con-sideration. It is concluded that interfacial reaction is not active at the strand part of tundish but is active at the pouring part because of the turbulent flow in the molten steel.

  • PDF

Charge Carrier Behaviour of Metal-Polymer Interface (금속-고분자 계면에서의 전하의 거동)

  • Yun, Ju-Ho;Choi, Yong-Sung;Ahn, Seong-Soo;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.373-374
    • /
    • 2008
  • Insulating polymers and their composites have been widely used in various electric apparatus or cables. Recently, the effects of interfaces (metal/insulator or insulator/insulator interfaces) on electrical insulation have attracted much attention. However, interfacial phenomena in actual insulation systems and their physical backgrounds are not well understood yet. In this paper, the behaviour of charge carriers near the metal/polymer interface and its effects on conduction and breakdown phenomena are discussed. The metal/polymer interface strongly affects carrier injection, space charge formation and breakdown phenomena. Based on their experimental results, the physical backgrounds of the interfacial phenomena are explained.

  • PDF

A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction) (치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구)

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun;Jeong, Ung-Rak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

Space charge characteristics of XLPE/EPDM laminate with interfacial condition (계면조건에 따른 XLPE/EPDM laminate의 공간전하 특성)

  • 남진호;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.140-143
    • /
    • 1997
  • It was investigated that space charge characteristics of EPDX/LPE laminates as a function of interfacial condition. There were no effects in charge accumulation characteristics at EPDM/XLPE laminate samples which were pasted with silicone oil and silicone grease. But when the crosslinking coagent (TMPTA) was pasted in laminate samples, there was no space charge in interface of EPDE/XLPE laminate and no effects in the laminate sample pasted with silicone grease dissolved crosslinking coagent. In the coupling agent pasted EPDhyXLPE laminate sample, space charge was accunlulated in XLPE side caused by coupling agent.

  • PDF

Molecular Interfacial Control and Molecular Morphology Properties of Functionalized Dendrimer Organic Monolayers (기능성 덴드리머 유기단분자막의 분자계면제어 및 분자모폴로지 특성)

  • Shin, Hoon-Kyu;Kim, Doo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.365-366
    • /
    • 2007
  • The dendrimer has been well known as a promising macromolecules for a building the organized nanostructure, which of the size can be controlled and which of periphery can be terminated by various functionalities. Currently a variety of research is being carried out in the field of dendrimer / polymer characterization, nano-scale atomic manipulation, and supramolecular nanostructure analysis. We investigated monolayer behavior and its characteristics at the air-water interface by LB method. In this report, we will present the interfacial properties of dendrimer monolayers on various conditions such as the surface-pressure, barrier speed and spreading quantity.

  • PDF

Evaluation of Apparent Interface Toughness of Composites Layers by Indentation Test (압자압입시험에 의한 이종재료 접합층의 계면인성 평가)

  • Song, Jun-Hee;Kim, Hak-Kun;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2089-2095
    • /
    • 2002
  • Ceramic/metal composites have many attractive properties and great potential fur applications. Interfacial fracture properties of different layered composites are important in material integrity. Therefore, evaluation of fracture toughness at interface is required in essence. In this study, the mechanical characteristics for interface of ceramic/metal composites were investigated by indentation test of micro-hardness method. Apparent interfacial toughness of TBC system could be determined with a relation between the applied load and the length of the crack formed at the interface by indentation test.

The effect of fullerene on the device performance of organic light-emitting

  • Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1805-1808
    • /
    • 2006
  • In this paper, we describe a versatile use of fullerene(C60) as a charge transporting material for organic light-emitting diodes. The use of fullerene as a buffer layer for an anode, a doping material for hole transport layer, and an electron transport layer was investigated. Fullerene improved the hole injection from an anode to a hole transport layer by lowering the interfacial energy barrier and enhanced the lifetime of the device as a doping material for a hole transport layer. In addition, it was also effective as an electron transporting material to get low driving voltage in the device.

  • PDF

The morphology and mechanical properties of the blends of syndiotactic polystyrene and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers

  • O, Hyun-Tack;Kim, Hwang-Ryong;Kim, Jin-Kon;Park, Joon-Young
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2001
  • The morphology and mechanical properties of the blends of a syndiotactic polystyrene (SPS) and poly-styrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers (SEBS) with various polystyrene block contents are studied. Mechanical properties, especially elongation at break and impact strength (IS), of the blend depend upon the morphology and interfacial adhesion, which in rum are affected by the viscosity ratio of constituent components and the styrene block content in SEBS. The IS of a blend was affected by the combined effect of rubber content and the interfacial adhesion. A maximum IS was found for a blend with the weight fraction of the PS block in an SEBS of 0.18. The IS of blends with smaller weight fractions of the PS block exhibited lower due to poor interfacial adhesion between SPS/SEBS in spite of a larger amount of rubber block. On the other hand, the IS of blends with larger weight fraction of the PS block becomes smaller due to lower amounts of rubber block in spite of better interfacial adhesion.

  • PDF