• 제목/요약/키워드: Interfacial damage

검색결과 89건 처리시간 0.043초

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

Electro-Micromechanical 시험법을 이용한 탄소 섬유 강화 에폭시아크릴레이트 복합재료의 자외선과 열경화에 따른 경화 모니터링 및 비파괴적 계면 평가 (Nondestructive Interfacial Evaluation and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing Using Electro-Micromechanical Technique)

  • 박종만;공진우;김대식;이재락
    • 폴리머
    • /
    • 제27권3호
    • /
    • pp.189-194
    • /
    • 2003
  • Electro-micromechanical 시험법을 이용하여 탄소 섬유 강화 열경화성 수지 복합재료의 경화 방법에 따른 계면 평가와 손상 감지능 및 경화 모니터링에 대해 고찰하였다. 경화 후 잔류 응력은 전기 저항 측정을 통해 모니터링 하였으며, 경화 방법에 따라 상호 비교하였다. 기지 재료의 인장 강도, 탄성률 및 계면 전단 강도는 열 경화의 경우가 자외선 경화보다 더 크게 나타났으며, 열 경화에서 경화 수축은 열팽창 계수 차이에 의한 잔류 응력 및 기지 재료의 수축에 의해 자외선 경화와 비교하여 더 크게 나타났다. 열 경화 시의 경화 중 전기 저항은 자외선 경화보다 더 큰 범위에서 변하였으며, 기지 재료의 기계적 물성과 계면 접착력에 의해 다르게 나타나는 겉보기 탄성률 또한 더 컸고, 같은 응력까지 더 빠르게 도달하였다.

Pb(Zr, Ti)$O_3$ 박막에서 결정립 크기 포화 현상에 관한 연구 (A Study on the Saturation of Grain Size in Pb(Zr, Ti)$O_3$ Thin Films)

  • 이장식;김찬수;주승기
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.530-536
    • /
    • 2000
  • During the grain growth of the PZT thin films by selective nucleation method using PZT seed, it was found that the grain size was saturated with the annealing temperature. The saturation of grain size was analyzed by the interfacial energy which appeared during the crystallization. The factors affecting the saturation of grain size were found to be the interfacial energy between perovskite phase and pyrochlore phase, and PZT thin film and the bottom Pt electrode. When the ion damage was introduced to the grain-size saturated PZT thin films, further lateral growth was observed. Pt bottom electrode thickness was changed to control the interfacial energy between the PZT thin film and the Pt bottom electrode. When Pt thickness was increased, the grain size was also increased, because the lattice parameter of Pt films was increased with the thickness of the Pt films. The incubation time of nucleation was increased with the amount of the ion damage on the Pt films.

  • PDF

열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중 (Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite)

  • 윤수진;김기근
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

同一한 衝擊에너지 條件下의 CFRP 斜交積層板의 衝擊損傷과 配向角의 關係 (Relations Between Impact Damage and Ply Angle Under Same Impact Energy Condition)

  • 배태성;;양동율
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1824-1832
    • /
    • 1992
  • 본 연구에서는 충돌입자의 크기의 영향을 평가하기 위하여 동일한 운동에너지 를 갖는 직경 5mm 및 10mm의 강구를 시편에 충돌시킨 후 배항각 변화에 따른 손물역의 크기 변화를 초음파현미경(SAM)과 주사전자현미경(SEM)으로 관찰하였고, 충돌에 따른 압축강성의 변화를 고찰하기 위하여 충격전후의 압축탄성계수를 측정하였다.

Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가 (Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.62-67
    • /
    • 2003
  • Microdroplet 시험법과 전기저항 측정을 이용하여 탄소섬유강화 epoxy-AT-PEI 복합재료의 손상 감지능 및 계면물성평가에 대한 연구를 수행하였다. AT-PEI 함량이 증가함에 따라 기지재료의 파괴인성은 증가하였으며, 이로 인한 에너지흡수 메커니즘에 의해서 계면전단강도 역시 증가하였다. Microdroulet 시험에서 순수 에폭시는 취성파괴 현상을 그리고 15 phr AT-PEI의 경우에는 파괴인성의 증가로 인해 연성 파단 현상을 관찰할 수 있었다. 경화 후에 열 수축에 의한 전기저항 변화는 AT-PEI 함량 증가에 따라 증가하였으며. 가변하중 하에서 순수 에폭시에 함침된 탄소섬유의 같은 응력까지의 도달시간과 기울기는 15 phr AT-PEI의 경우보다 더 빠르고 높았다. 경화과정과 가역적인 하중 하에서의 전기저항 측정으로부터 얻은 결과는 기지재료의 파괴인성과 잘 일치하였다.

Electro-Micromechanical시험법을 이용한 섬유 함침 각에 따른 탄소와 SiC 섬유강화 에폭시 복합재료의 계면 손상 감지능 및 평가 (Interfacial Damage Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Fiber-Embedded Angle using Electro-Micromechanical Technique)

  • Joung-Man Park;Sang-Il Lee;Jin-Woo Kong;Tae-Wook Kim
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.68-73
    • /
    • 2003
  • Fragmentation 시험법과 전기저항 측정을 통하여 탄소 및 SiC 섬유강화 에폭시 복합재료의 계면물성과 섬유파단에 대한 전기적 감지능을 연구하였다. 섬유 함침 각이 증가함에 따라서 계면전단강도는 감소하였고, 섬유파단에 의한 전기저항도 값이 무한대로 증가하는 시간은 길어졌다. 높은 함침 각에서 전기저항도의 초기 기울기는 급격히 증가한 반면. 낮은 각에서는 점차적으로 증가하였다. 또한 낮은 함침각의 두 섬유 모두에서 stress whitening pattern을 뚜렷하게 관찰할 수 있었지만, 높은 함침 각에서는 그렇지 못했다. 섬유 함침 각이 감소함에 따라서 섬유 파단 간격과 debonding된 길이는 두 섬유 모두에서 증가하였다. 본 연구에서 사용한 electro-micromechanical 시험법은 전도성 섬유강화 복합재료의 섬유 함침 각에 따른 계면 감지능 측정을 위해서 비파괴적 평가방법으로 실행 가능하였다.

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구 (Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.