• Title/Summary/Keyword: Interfacial Tension

Search Result 186, Processing Time 0.029 seconds

Two new relationships for slip velocity and characteristic velocity in a non-center rotating column

  • Torkaman, Rezvan;Heydari, Mehran;Cheshmeh, Javad Najafi;Heydari, Ali;Asadollahzadeh, Mehdi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2809-2818
    • /
    • 2022
  • In this investigation work, liquid-liquid extraction (L.L.E) through three distinctive frameworks have been examined for assurance of slip velocity (S.V), and characteristic velocity (C.V) in a non-center rotating column (N.C.R.C) with a wide extend of factors. Three double frameworks with distinctive interfacial tension comprising of toluene-water (high interfacial tension), n-butyl acetate-water (medium interfacial tension), and n-butanol-water (low interfacial tension) were investigated for tests. Two common relationships for the expectation of S.V and C.V, including phase stream rates, rotor speed, column geometry additionally physical properties, are displayed. The recommended relationships were compared with test information gotten from the writing and the display examination. Findings of this study, the present proposed correlations are more accurate than those previously reported.

A Theoretical Study for the Formulation Design of PBX(I) (복합화약 조성설계에서의 이론적 연구(I))

  • Shim, Jung-Seob;Kim, Hyoun-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • A Plastic Bonded Explosive(PBX) is mainly composed of nitramine explosive and polymer binder. The great number of serious applications of PBX requires the good adhesion between nitramine crystals and binder, which depends on the surface characteristics of a filler and binder. In the pursuit of the better design to achieve the enhanced adhesion, profound knowledge of the surface and interfacial characteristics of explosive and binder should be exploited. In this study, the influences of physicochemical properties between RDX and binders such as interfacial tension($\gamma_{SL}$), latent heat($Q_m$), and density($\rho$) on impact sensitivity of PBX were investigated. As experimental results, the major contribution factor to impact sensitivity of PBX was the interfacial tension, compare with other surface properties. The correlation coefficient of $H_{50}$ versus $\gamma_{SL}$ is 0.9932 when a polynomial regression method was used.

Effect of Low Molecular Weight Species on the Interfacial Tension of PC/SAN Blend (PC/SAN 블렌드의 계면장력에 미치는 저분자량 성분의 영향)

  • Yang, Dongjin;Son, Younggon
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.388-393
    • /
    • 2015
  • Low molecular weight species were extracted from PC and SAN by a solvent extraction method in order to investigate the effect of low molecular weight species on interfacial tension and affinity between PC and SAN. From the analysis of molecular weight distribution by the GPC, it was confirmed that the low molecular weight species were effectively eliminated by the solvent extraction. Interfacial tension measurements and morphological observation were carried out with the PC and SAN of which the low molecular weight species were extracted. Interfacial tension was increased and the infinity was decreased for the extracted PC and SAN pair. This result implied that the low molecular weight species play a role as a compatibilizer between two polymers. Among two polymers, low molecular weight SAN contributes more in the compatibilization. Thus, it is favorable to use SAN containing a larger amount of low molecular weight species in fabrication of PC/ABS blend.

Purification and Characterization of Biosurfactant from Tsukamurella sp. 26A

  • Choi, Kyung-Suk;Kim, Soon-Han;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 1999
  • A biosurfactant produced by Tsukamurella sp. 26A was purified by procedures including acid precipitation, ethylacetate extraction, and adsorption chromatography. The purified biosurfactant reduced the surface tension of water from 72 mN/m to 30 mN/m at a concentration of 250 mg/l, whereas the minimum interfacial tension against n-hexadecane was lowered to 1.5 mN/m at a concentration of 40 mg/i. The compound stabilized oil-in-water emulsions with a variety of commercial oils and had strong emulsification and stabilization activities when compared to those of commercial emulsifiers and stabilizers. Surface tension was stable over a broad range of pH (2-12) and temperature ($100^{\circ}C$, 3h). The biosurfactant was identified as glycolipid having a hydrophilic moiety of trehalose.

  • PDF

Topological Analysis on the Spinodal Decomposition and Interfacial Tension of Polymer-Solvent Systems

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.269-277
    • /
    • 1995
  • A topological theory has been introduced to extend the theory of Balsara and Nauman to evaluate the entropy of in homogeneous polymer solutions. Previous theories have considered only the terms about the displacement of junction points, while the present theory has obtained a more complete expression for the entropy by adding the topological interaction terms between strands. There have been predicted the characteristics of the spinodal decomposition and the interfacial tension of polymer solutions from the resultant expression. It is exposed that the theoretically predictive values show good agreement with the experimental data for polymer solutions.

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.

Surface Properties and Betergency of the Binary Surfactant Mixture (계면활성제 혼합용액의 계면특성 및 세척성에 관한 연구)

  • 심소희;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.3
    • /
    • pp.632-640
    • /
    • 1997
  • Changes in surface properties and detergency of sunactant mixtures were investigated in order to study the optimum mixing ratio of anionic and nonionic surfactants by measuring surface tension, interfacial tension, suspendability, and emulsification as a Amction of mixing ratio. Also, surface tension and detergency of the surfactant mixtures were determined with the increase of water-hardness or temperature. The results were as follows: the addition of NPE to anionic surfactant solutions (LAS or SDS) by 0.1 mole fraction remarkably decreased surface tension. NPE (n=15)/anionic surfactant mixtures showed a synergistic effect in lowering interfacial tension and emulsification, but NPE (n=7.5)/anionic surfactant mixtures did not. In suspension stability, however, synergism appeared when LAS or 505 was mixed with both of NPE's. With respect to the hydrophile of NPE, NPE (n=15) was more effective than NPE (n=i.5) in improving suspension stability. Detergency of LAS/NPE mixture changed almost linearly with mixing ratio, but that of SDS/NPE mixture increased remarkably by the addition of 0.1 or 0.2 mole fraction of NPE at all temperatures. As the temperature increased, surface tension of surfactant mixtures decreased and detergency was improved, but their synergistic effect decreased. In hard water, the mixtures showed better detergency than single surfactuant solutions.

  • PDF

The Wetting Property of Sn-3.5Ag Eutectic Solder (Sn-3.5Ag 공정 솔더의 젖음특성)

  • 윤정원;이창배;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Three different kinds of substrate used in this study : bare Cu, electroless Ni/Cu substrate with a Nilayer thickness of $5\mu\textrm{m}$, immersion Au/electroless Ni/Cu substrate with the Au and Ni layer of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness, respectively. The wettability and interfacial tension between various substrate and Sn-3.5Ag solder were examined as a function of soldering temperature, types of flux. The wettability of Sn-3.5Ag solder increased with soldering temperature and solid content of flux. The wettability of Sn-3.5Ag solder was affected by the substrate metal finish used, i.e., nickel, gold and copper. Intermetallic compound formation between liquid solder and substrate reduced the interfacial energy and decreased wettability.

Effects of Sulfonation Ratio in Petroleum Sulfonate Synthesis on Interfacial Properties and on Fluidity Properties of Cement Mortar (Petroleum Sulfonate의 합성에 있어서 황산화율이 계면활성 특성 및 시멘트 몰타르의 유동성에 미치는 영향)

  • Kim, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.444-449
    • /
    • 2010
  • In this study, the petroleum sulfonate(PS) was synthesized from pyolyzed fuel oil by sulfonation reaction with sulfuric acid. The PS synthesized had surfactant behaviors relating to the interfacial properties such as surface tension, surface adsorption, and wetting, etc. These interfacial properties were affected by the sulfonation ratio in the synthesis. As the sulfonation ratio increased, the surface tension of the PS aqueous solution decreased. However, when the ratio was too high, the surface tension was increased due to the extremely higher value of hydrophilicity of PS. At the optimum sulfonation ratio, the PS had a good wettability on the cement particles and a good fluidity of the cement mortar with a high adsorption.

Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence (전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성)

  • Choi, Se Bin;Lee, Joon Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.677-682
    • /
    • 2015
  • We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.