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between AG*2 and Gutmann donor number. If we assume 

that the dissociative mechanism is predominant in acetoni

trile, the figure of Strasser et al. t이Is us that \GW will 

be about 79 kj/mol. This is 12-28 kj/mol larger than obser

ved AG* value, which indicates that dissociative mechanism 

is improbable.
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A topological theory has been introduced to extend the theory of Balsara and Nauman to evaluate the entropy of 

inhomogeneous polymer solutions. Previous theories have considered only the terms about the displacement of junction 

points, while the present theory has obtained a more complete expression for the entropy by adding the topological 

interaction tenns between strands. There have been predicted the characteristics of the spinodal decomposition and 

the interfacial tension of polymer solutions from the resultant expression. It is exposed that the theoretically predictive 

values show good agreement with the experimental data for polymer solutions.

Introduction

Topological theories have recently played a great role in 

studying various physical properties including the elasticity 

of polymers. The theories which have systematic기ly studied 

the rubber elasticity so far are the phantom network theo

ries1~6 headed by Flory et al. and the topological network 

theories7~12 headed by Iwata et al. Since phantom network 

theories have dealt with the energies of rubber elasticity 

as only functions of the end-to-end distance between junction 

points, and have not considered the effect of interaction bet

ween chains by entanglement, these have recently retrogra
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ded. On the other hand, topological network theories have 

developed remarkably since these have explained very well 

the effect of interaction between chains by entanglement. 

Iwata has theoretically explained the various phenomena of 

rubber elasticity by applying topological theories to the poly

mer systems consisting of only a single kind of polymers.10~12 

The models with which he has dealt are mainly confined 

to the SCL (simple cubic lattice) ones,11~12 and he did not 

obtain detailed transformation matrices and related topologi

cal contribution terms of entropy in conjunction with the 

tetrahedral lattice (THL) model (called the body-centered 

cubic lattice (BCL) model earlier by our previous work13). 

He has analyzed the theory of Balsara and Nauman about 

polymer solutions in view of topological approach. The ques

tion of how the entropy caused by strands is bound up with 

interaction between chains of polymer systems has systema

tically examined in detail. Here, a topological theory for poly

mer solutions has been evolved by assuming that the poly

mer solutions have 나le structure of 아)e THL model. It is 

assumed that all the junction points of polymer solutions 

form the THL model for some average time interval.

In the present work, the entropy term caused by interac

tion between strands has been topologically derived based 

upon the THL model. We have topologically extended the 

theory of Balsara and Nauman by combining the obtained 

topological entropy term with the entropy one caused by 

displacement of junction points. In the result, a discrepancy 

between the original theory of Balsara and Nauman and ex

perimental data is removed. The theoretically predictive val

ues are in good agreements with the experimental data.

THL Model

This tetrahedral lattice (THL) model has been known as 

the body-centered cubic lattice (BCL) one by our previous 

work.13 The distribution functions and transformation matri

ces about the THL model had already been offered by our 

previous work.13~15 In the present work, the contribution 

term of entropy caused by interaction between polymer 

strands is derived from topological distribution functions by 

assuming that the structure of polymer-solvent systems 

forms a large aggregate of the THL model.

THL model is the one in which the junction points of 

polymer networks are located at the points of a body-cen

tered cubic lattice, and in which the arrangement of four 

strands projected from each junction point always takes the 

tetrahedral structure. The picture of the three dimensional 

structure of the THL model is given in Figure 1, where 

solid lines denote linearly compressed strands and small cir

cles represent junction points. Here a word strand means 

a polymer chain which joins two neighboring junction points. 

A word junction point means the jointing part of strands 

in the networks.

In the THL model, it is assumed that a polymer solute 

chain aggregate is regularly arranged at the lattice points, 

in turn with the solvent chain aggregate. For example, in 

Figure 1, the black closed circles in이uding A and C repre

sent the sets of junction points of polymer solute molecules, 

and the white open circles including B and D represent those 

of polymer solvent molecules. Especially, in the case that 

solvent molecules have lower molecular weight which does

Figure 1. The three dimensional structure of the THL (tetrahe

dral lattice) model, where solid lines denote strands and small 

cir이es represent junction points. The black closed circles inclu

ding A and C represent the sets of junction points of polymer 

s이ute molecules, and white open cir시es B and D represent those 

of polymer solvent molecules. A junction point,扁 is plotted 

as the junction point surrounded with a regular square. A junc

tion point, Ld, is plotted as that with a regular triangle. The 

length of BE, EF, and EG is all two without unit.

not form cross-link, the open circles represent the sites to 

which the end point of solvent molecules attach. In short, 

the network structure of the THL model is composed of 

the aggregate of polymer solute molecules and the aggregate 

of solvent molecules. In each chain aggregate, junction points 

are classified into two categories according to the methods 

of their combination with neighboring strands. One is the 

set of junction points corresponding to the apexes of lattices 

(i.e., the junction point surrounded with a regular square 

of Figure 1), and the other to the body centers of lattices 

(M, the junction point surrounded with a regular triangle 

of Figure 1).

Let Jevrs be junction points of the former and 丿/s the latter. 

For either or two different spatial orientations per 

junction point can be allocated in the way of combination 

with four neighboring strands around a given junction point. 

The effects of these two arrangements, however, are essen

tially identical in view of contribution to the free energy 

of the system, so it doesn't matter which of them is chosen 

in going on discussing. In usual, it is convenient to select 

a J刊 in the central part of the system as an origin of the 

coordinates.

Conveniently, if the length of an edge of lattices is taken 

as two without unit (i.e., the distance of BE, EF, and EG 

is all two in Figure 1), the coordinates of every junction 

point can be readily described as the set of three components 

having only values of integers. Figure 2 represent옹 the char

acteristic combination modes of strands around the general 

junction points and 扁's, and shows 나le spatial orienta

tions of strands defined on the basis of a Jevt in addition 

to the coordinates of junction points.

Independently of _/纣 or 扁 if I is taken as a position vector, 

the following equations give its components and their areas;

l=Q, j, k)

i= 一/+1,…，7-1, I
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Figure 2. The characteristic combination modes of strands 

around the general junction points (a) Jev (b). This picture 

shows the spatial orientations of strands defined on the basis 

of a Jev, in addition to the coordinates of junction points.

where /,2 is the root mean squared end-to-end distance of 

the zth strand, and where u, and «/ stand for positions of 

an a segment of i strand and v, and v' stand for positions 

of a Z? segment of the same strand. u„ v}, Aw„ and Ar, have 

the relation that % =彻一佑，Vj~m — △阳=1%— 的‘I, and

— Ir； —y/|, respectively. Kilr K2l, and K& of Eqs. (4) and

(5) are given by

K _( Un, + 1/vi +1/Au(- +1/― 1/Au, — /Avf 
A1-\- 1/Aw.- 1/A^ 1/偽'+1/计 +1/△的 + 1/Ay,

v _l ra/u. + rjv； \
2 \ 福试노仙v 丿 (6)

K3=rar2/u, + ra2/w/ + rb，2/v,+- (rfl 一 raf)2/ni 4- (n 一 nf/m

-7+1,…，JT,J

k=-Kt —K+l, K-l, K (1)

where X J, and K all take the values of positive integers. 

It is necessary to note that the components of every J典 all 

have values of even integers, and that those of every 

have only values of odd integers. The spatial orientations 

of all the strands in the system are deduced to only four, 

as pl아ted in Figure 2(b). Conveniently, let o； or。泓 (o=X 

Y, Z, and W7) be a symbol which represents a strand. Then 

the four spatial orientations of strands in the system are 

defined as

= 아rand from Jev(i, j, k) to 扁0-1, j+1, 为+ 1) 

匕鶴=strand from JM. j, k) to 扁(i+1,，一1,论+1) 

乙"=strand from Jev(i, j,幻 to RQ+1, ;+l, k~l) 

吼表=strand from Jev(i, j, k) to 扁(/一1, /-l,态一 1)(2)

The picture for these orientations is given in Figure 2(b).

The entropy term caused by interaction between strands, 

△S叫，can be derived by using the contact distribution func

tions of the THL model. The entropy change is called as 

the topological entropy change of polymer chains. For the 

THL model, the single contact probability between two 

strands,知(％), and the double one between two strands,姒K), 

are given by13~15

gp(r,)=於广 2 Z F応시 万)

卩=1

如(匕)=初「2成(’,)]1 土 X卩协(。卩山) (3)

1 p = 1

where m is the number of submolecules in a strand, and 

rt is the position vector of the zth strand from the reference 

junction point. 孔애(。」若)is the single contact distribution 

function between chains, and 玲is the double one 

of the phantom network. F湖(。卩丨 K) and 尸伽(。叩‘ IK) are repre

sented as

玲(이 r<) = (3w 2/2n/(2MIw,y,y>K'i)3/2exp( ―跄、户务)) (4)

and

珞 (Q나血)=(9師2/侦;版, 刀佑 00 給&시 Kill 严

( — 3애匾一 K春K거电) 
expk 2Z? (5)

The ||Ki|| of Eq. (5) is a determinant of Kx.

The number of distinguishable arrangements caused by 

single contact among all the strands, Qg, is given by

Cg=(i/m!)n 為(匕) 
i -1

= (1/M1D n (gp(r,)m 2 史 玲((시乙)) (7)

ni being the number of lattice sites available to the (i + l)th 

strand.

The number of distinguishable arrangement caused by 

double contact among all the strands, d is represented 

by

Qa = (1/mi!) n hp{Ti)

=(1/衍!)対(0(加0厂1 * f 玲(0妫))(8)

Evolving Eqs. (7) and (8) by following the procedure offered 

in Refs. 10-15, the equations for Qg and Q* are obtained 

as f어tows;

Qg=QFH任m ln((l-4>)1/4/(l-0-0.5桅跆) ⑼

and

d = Qfh顷 ln((l - 0)I/4/(l — 0—0.5。沪2) (10)

where(|>(r) is the local polymer volume fraction at r from 

the reference point. The number of distinguishable arrange

ments of the Flory-Huggins's theory,16 Eh, and the variable 

@ are given by

d习二(1/源)出(Z—1广2}脸广刊 (11)

e = (l/4) (V勺成 a2 nn (12)

where z is the coordination number of the lattice, n0 is the 

number of the lattice sites, and a is the length of a strand. 

The number 4 in the denominator of Eq. (12) represents 

four directions of the strands attached to junction points. 

Thus the total number of topologically distinguishable ar

rangements caused by interaction among all the strands, d加 

is given by

Qt 여〉~ +Q；

=瞞弥 ln((l -(»1/2/(l — 0 — OB")") (13)

Eq. (13) is one of the most important parts of our present 
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work, and a very valuable expression obtained by expanding 

the topological theory of Iwata to the THL model.

For phantom network theories, the entropy of polymer sys

tems has been analyzed so far only by the contribution terms 

caused by displacement of junction points. In topological net

work theories, the change of entropy and free energy has 

been more completely considered by adding the contribution 

terms of entropy caused by interaction among strands to 

those caused by displacement of junction points.

Eq. (13) has important meanings in the fact that it offers 

the source of topological entropy based upon the structure 

of the polymer network of the THL model. In the next sec

tion, we consider how Eq. (13) contributes to expanding the 

theory of Balsara and Nauman, how it removes the discrep

ancy between theoretically predictive values and experimen

tal data which the theory of Balsara and Nauman did not 

solve, and how it explains good agreement between theoreti

cal values and experimental data.

Topological Analysis of the Balsara 
and Nauman*s Theory

This section is composed of deriving the mixed entropy 

of polymer-solvent systems by combining the phantom net

work entropy of junction points with the topological entropy 

term of strands obtained in the previous section after obtai

ning the entropy caused by displacement of junction points, 

called the phantom network entropy. In the first place, the 

process of deriving of the phantom network entropy by Bal- 

sara and Nauman is described from now on.17

Consider the polymer network of the THL model as an 

aggregate of n lattice sites which contains a certain number 

of polymer molecules. It is assumed that these molecules 

are uniformly distributed throughout the n sites, except for 

a small region centered around a lattice site. Now such a 

small region is our system of interest. Let n0 be the number 

of sites contained in such a small region. It is necessary 

to estimate the effect of the nonuniformity of the polymer 

concentration on the entropic contribution of the lattice site 

at o.

It is assumed that the concentration gradients are small 

and the system is large compared with molecular dimen

sions. Namely, the system contains a large number of mole

cules. It is important to evaluate the number of ways of 

adding the (i + l)th polymer molecule to the lattice consisting 

of n0 sites, including the i polymer molecules added previ

ously. Molecules should be arranged in 쵸 way that establi

shes and preserves the concentration gradient. In other wo

rds, the number of available sites is not equal to the number 

of vacant sites. Actually, larger proportions of vacant sites 

are available at the points where the existent concentration 

is high because it must remain high after the new molecules 

are placed.

As offered previously, let m be the number of submole

cules contained in a strand. The number of options available 

to the first segment of the (i + l)th polymer chain is given 

by (n (no-ini'). The number of ways of arranging the (i + l)th 

molecule, v1+i is given by

V+i = (払一谕)X X (z-l)(f2l) X -X (z—1)(食) (14)
(________ I (____ I I_________I I__________ I
1st segme n2nd 3rd wth segment 

where f„i is the fraction of sites available to the wth segment 

of the 0+l)th strand and z is the coordination number of 

the lattice. The local polymer volume fraction at r from the 

reference, 0(r), is assumed to be expressed as a Taylor series 

in terms of the volume fraction at o.18

0(r)=Oo+[r-V)<I>l + (l/2)L(r-V)201 (15)

For the THL model, the average volume fraction at a dis

tance L from a randomly chosen lattice site can be expressed 

as

币Q)=①时 + (l/4)(V2O)e L2 (16)

where ^av is the volume fraction averaged over the n0 sites. 

When a fixed concentration gradient is maintained, the frac

tion of vacant sites which are available to a given molecular 

segment decreases as the concentration increases and inc

reases as the concentration decreases. For the THL model, 

the fractional availability is given by

fn=Ll~ im/n0 一 (l/4)(V2<X>)oKa2] (17)

where it is assumed that polymer strands are ideal chains 

so that the average extension of n segments may be ntz2, 

a being the length of each segment. Therefore,

V+i = (n0~ iwkCl 一 im/n0 - (1/4)(720)^2](2-1)E1~ im/n0

—(1/4) • (V 純)。2西…(2 一 i)[i—im/no—(1/4)(卩知)刎次]

(18)

or 

v, + i= L(n0 一 z初)/(忧허 ~ Diz(刀。-fw + e)fe- 1)(m0 一 z初 + 2 応)…

(2—1)(MO —ZW-i-MZe) (19)

where e is given by Eq. (12). Operating Eq. (19) so that 

only terms of order u may be retained, consistent with the 

assumption of small concentration gradients, we obtain

V： +i = [(K0 - Z物尸(2 - 1)허 “/颯 - 叮 [ 1 + { U /(% - Z初)}

{師伽+ 1)/2}] (20)

The total number of distinguishable arrangements, is 

represented as

Cw = (l/“1!) n v,+1 (21)
:=0

Substitution of Eq. (20) into Eq. (21) on the condition that 

the terms of order w are retained gives

圣制쯔芳）T+트끄心2

+ ... + (22)

As known generally,

t ^ = 0.577215+In n + -----

스' 氏 珈
(23)

For large nQ and Mb C网 can be accurately expressed as 

o _ 1 /(z(z-ir-2 . I
‘사 —葡( ，挤I 丿 卩+ 2 叫”。一”四」丿

(24)

2
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In the case that m>l, Eq. (24) is transformed into

= Qf/XI + (e M/2)ln[l-0]-】) (25)

where。is the averaged polymer concentration in the n0 

sites, and Qfh is given in Eq. (11).

Balsara and Nauman offered Eq. (25) as the core of their 

theory, and regarded Eq. (25) as the equation from which 

the entropy of polymer-solvent systems could be obtained. 

As mentioned previously, however, Eq. (25) is only the parti

tion function (the number of distinguishable arrangements) 

of a phantom network theory obtained by the contribution 

due to displacement of junction points. Therefore, the topolo

gical partition, Eq. (13), must be added to Eq. (25) in order 

to obtain the entropy of polymer-solvent systems more com

pletely. Shortly speaking, the total partition function of the 

mixed systems, C, is obtained by adding Eq. (13) to Eq. 

(25). Namely,

Q — + Qt여>

= w/2) m[l—6]T)+GFH ew ln((l-0)1/2/

(1一3-0.5秒4)

= Cfh(1+(任 伽/2) ln[l —©]一1) +。刖 U /n((ln[l —4)])/

2-(5/4) ln(l-0-0.5 密))

= m/2) ln[l —(|)]7) + dH 任 w( —(InEl—0])/

2+(5/4) lnEl-0-0.5

= nF/Xl+(5e w/4) lnEl-0-02]"1) (26)

Q of Eq. (26) is a position function indispensable to obtaining 

the entropy of a mixed system. Eq. (26) has important mean

ings in the fact that it is a more complete expression of 

describing the entropy change of a mixed system, and an 

equation of combing a topological network theory with a 

phantom network theory. Similarly to the case of Eq. (13), 

thus Eq. (26) is also one of important parts obtained in our 

present work.

Letting and be the number of distinguisha이e ar

rangements of the polymer and solvent molecules before 

mixing, the total entropy change on mixing, AS, is given 

by

AS=^(ln [CLw/QAL] + ln [l + (5e m/4)

m{l—6—0.5硏]) (27)

where k is the B시tzmann constant.

Now consider the entropic contribution due to the lattice 

site located at 0, ASs. Assuming slow spatial variations in 

(D, this can be evaluated by dividing Eq. (27) by n0 and re

placing 0 by the local volume fraction 0.

ASs ——(In [QFw/n^Qj + In [1 —(珈卸口叫％/24) 
Mo

1어1一6—0.時}]) (28)

It is necessary to note that both V2(|)and 0 are now evaluated 

at the reference point o. Neglecting terms involving e2, 

then

厶Ss=Z\Sfh-遂普 ln(l —e — 0.5妒)VW (29)

where ASfh is the Flory-Huggins's entropy of mixing per 
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lattice site. Integrating Eq. (29) over the volume of the sys

tem, Vt the mixed entropy of an inhomogeneous system, 

△S* is given by18

= /r[s(0)-眛 g2p/24(i—© - O.502)]rfr (30)

where p is the number of sites per unit volume, and s((|)) 

is the mixed entropy per unit volume of the perfectly homo

geneous mixture. An expression for the free energy of 

mixing of the system, AG, can be obtained by combining 

the mixed enthalpy of an inhomogeneous polymer solution 

with Eq. (30). Expressing AG in the Landau-Ginzburg's form, 

17 then

AG= [ B(e) + k(V(|))2]Jv (31)

where g(《D) is the Flory-Hugginss free energy of mixing per 

unit volume, and for the THL model k is represented by

k= 甲 쓰 &+5/(2 — 飾一妒)] (32)

vs o

where x is the Flory-Huggins^ interaction parameter, vs is 

the molar volume of the solvent, and Rg is the radius of 

gyration of the ideal polymer chain. Generally, k can be re

garded as the penalty related with the occurrence of gradi

ents in a given solution. Eq. (32) predicts that this penalty 

increases as the concentration of polymers increases, and 

actually the penalty approaches infinity near the bulk state 

SD.

Spinodal Decomposition of Polymer-Solvent 
Systems

The characteristics of the spinodal decomposition of poly

mer-solvent systems can be predicted by Eqs. (31) and (32). 

The analysis discussed here is based on the linearized 

theory of spinodal decomposition by Cahn.9 According to the 

Cahn's theory, the wavelength of concentration fluctuation, 

入加，is given by

从=4jt[一 曲(4>)1/2 (33)

The K, of Eq. (33) plays a r•이e of dominating the initial 

stages of the decomposition of an unstable solution. g”(e) 

can be evaluated by the Flory-Huggins^ theory as follows;

F(e)= 쯔・ 丁(心s - Xr) (34)

where T is the temperature of unstable solution, Ts the spi

nodal temperature of the solution, and ■灯 and xrs are the 

value of % at T and Tst respectively. Combining of Eqs. (32)- 

(34) gives

z = (2 面G/까/2) [(花一xQ/{)仃+5/(2 —2。一(35)

Assuming that

国m (36)

then

시 = (2似g/3w)[(7財丁一1)/{7/「+5/{"，(2 — 2。一。2)}厂1/2 (37)

Referentially writing down 从 of the Balsara and Nauman's 
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theory, then

Z = (2 状 g/3")[(7財丁—1)/{7/「+3/{加(1 —(37')

Neglecting the entropic contribution of junction points and 

strands in Eq. (37), the Van Aarsten's equation for 入佈 is 

given as follows;

从=(2泅/3")[1-7、〃] -1/2 (38)

Interfacial Tension of Demixed P이ymer 
Solutions

Cahn and Hilliard had already discovered the relationship 

between interfacial tension and free energy of inhomoge

neous solutions.18 According to 나leir theory, the interfacial 

tension, o, between two binary liquid phases a and g at 

equilibrium is given by

附
o = 2 Ek 怎(6丁〃 (39)

J ©a

where △£(<))) is the homogeneous free energy per unit vol

ume of a mixture with concentration, Q referred to a stan

dard 아ate of an equilibrium mixture of a and 8 (see Ref. 

18 for details). Letting a and 0 be the dilute phase and 

the concentration phases, respectively, △g(O) about a poly

mer-solvent system obeying 난le Flory-Huggins is represen

ted as follows;

怎=旱 (으(卩/>-卩；)+(1-4>)(禹-冶)) (40)

where 出 and |is are scaled chemical potentials of the polymer 

and solvent, respectively.由 and 禺 are given by

而=ln <|>—(w —1)(1 — 4))+mx(l — 0)2 (41)

卩s=ln (1 —0) + (1—l/m)<|)+x fl)2 (42)

The values of 出 and ps evaluated at equilibrium, (4 and 

gs, are given by

用= I4(妒)=由(时)

応=噸仍=出(时) (43)

Combing Eq. (32) with Eq. (39) gives

가矗* Z ([x+芬一[오皿 — 戚

+(i-0)(禺-if)]) 四 (44)

Referentially describing the interfacial tension, o, of the Bal- 

았ara and Nauman's theory in order to compare Eq. (44) with 

their equation, then

쯔砂 J： ([x+了%][오皿F

+ (1-0)(低一卩；)]) 如 (44f)

Results and Discussion

The results of the Balsara and Nauman's theory for poly

mer-solvent systems are expanded by adding those of a to

pological network theory of dealing with the interaction be-

Rgure 3. The hfi(d) as functions of d, which is a distance be

tween the centers of the strands, for the THL model. The solid 

line represents the curves obtained by the Nose-Tan's sample 

when the root mean squared end-to-end distance of a strand, 

q, is 0.32 ml/2a, and the dashed one represents that by the Aars- 

ten-Smolders's when q is 0.47 w1/2a.

tween strands in order to remove the discrepancy between 

the original theory of Balsara and Nauman and experimental 

data nearly to the zero it.

It is assumed that the polymer-solvent systems considered 

here are composed of the polymer networks of the THL 

model. The detailed structure for these polymer networks 

is plotted in Figure 1. The polymer network of joining the 

junction points represented by black closed circles is an agg

regate of polymer solute, that by white open circles is one 

of solvents. It is regarded that the THL model offered here 

is the reasonable structure of polymer networks when at

tractive and repulsive force between chains are all conside

red. In polymer networks of the THL structure, the way 

of arranging of strands around junction points is plotted in 

Figure 2. The core of topological network theories is in the 

fact that the interaction between strands is regarded as the 

principal contribution term to entropy and free energy for 

polymer-solvent systems. Interaction between strands is clas

sified into the term caused by single contact and that by 

double. A central distance between strands is given by 

此+以一命—

2 m1/2 a
(45)

where ra and raf are the position vectors representing both 

end points of the a strand, and b and r/ those of the b 

strand. gp(r) and hp(r) of Eq. (3) are readily transformed into 

gp(d) and 知(d), respectively. In Figure 3, there are shown 

the calculated curves of hp(d) about the Aarsten-Smolders's 

sample22 and the Nose-Tan's sample22 for the THL model 

structure. In Figure 4, there are shown the calculated curves 

of gp(d) about the Aarsten-Smolders's sample and Nose-Tan^ 

sample for the THL model structure. In Figures 3 and 4, 

the solid lines represent the curves obtained by the Nose- 

Tan's sample when the root mean squared end-to-end dis

tance of a strand, q, is 0.32 m1/2a, and the dashed lines repre

sent that by the Aar아en-Smolders's when q is 0.47 mx!2a. 

Since the value of q of each sample strand is peculiarly de

termined by various factors such as degree of polymerization,
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Figure 4. The gp(d) as functions of d, which is a distance be

tween the centers of the strands, for the THL model. The solid 

line represents the curves obtained by the Nose-Tan's sample 

when the root mean squared end-to-end distance of a strand, 

q, is 0.32 wl/2a, and the dashed one represents that by the Aars- 

ten-Smolders^ when q is 0.47 ml/2a.

ts(k)

Figure 5. The fastest growing wave length,入" plotted as a 

function of quench temperature. The black closed circles of the 

picture represent the experimental values of Aarsten and Smol

ders.21 Three dashed Hnes represent the results of the original 

theory of Balsara and Nauman for three values of The solid 

line represents the calculated curve of our present theory for 

the Xrs value of 0.63.

concentration of solutions, temperature, and so on, the values 

of q of two sample strands differ from each other. It is self- 

evident that the farther the distance between strands is, the 

smaller the probability of contact between strands is. In fi

gures 3 and 4, the value of hp(d) is greater than that of 

gp(d) because the double contact probability is greater than 

the single contact one due to the character resulting from 

the relatively long length of a strand.

In Figure 5, the fastest growing wave length, Ki, is plotted

Figure 6. Interfacial tension between demixed polymer solutions 

as a function of the ratio of the polymer concentration in the 

dilute phase to that in the concentrated phase. The black closed 

circles represented the experimental data of Nose and Tan22 for 

the polystyrene-methylcyclohexane system (w — 300). Three 

dashed lines represent the result of the original Balsara and 

Nauman's theory for three values of m. The solid line represents 

the result of our present theory for the m value of 300.

as a function of quench temperature. The black closed circles 

of the picture represent the experimental values of Aarsten 

and Smolders.21 Three dashed lines represent the results 

of the original theory of Balsara and Nauman for three val

ues of The solid line represents the calculated curve 

of our present theory for the Xn value of 0.63. In other 

words, three dashed lines represent.the results of Eq. (37'), 

and the solid line the result of Eq. (37). From the comparison 

of our present theory with the original Balsara and Nauman' 

s, it is exposed that the discrepancy between the results 

of the Balsara and Nauman's theory and the experimental 

data essentially results from the fact that the Balsara and 

Nauman's theory did not include the effects of interaction 

between polymer strands in calculating the entropy of poly

mer-solvent systems. The experimental sample related with 

Figure 5 is a 15% (by weight) solution of poly(2,6-dimethyl- 

l,4-phenyleneether)CPPE] and caprolactam. The values of 

parameters used in calculation are such as Rg = 0.02 卩m, 

0=0.15, u=0.63, and q — 0.47 mx/2a. From Figure 5, we see 

that the effect of interaction between strands is larger at 

the higher quench depth than at the lower quench depth. 

It is judged that such an aspect results from the fact that 

for the higher quench depth the time interval about rear

rangement of polymer networks so the probability of interac

tion between strands is greater.

In Figure 6, there is shown interfacial tension between 

demixed polymer solutions as a function of the ratio of the 

polymer concentration in the dilute phase to that in the con

centrated phase. The black closed circles represented the 

experimental data of Nose and Tan22 for the polystyrene-me

thylcyclohexane system (m = 300). Three dashed lines repre-
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Figure 7. The free energy curves obtained from Eqs. (30), (31), 

and (34). The solid line represents the result of the Nose-Tans 

sample, and the dashed one represents that of the Aarsten-Smol- 

ders's sample.

sent the result of the original Balsara and Nauman's theory 

for three values of m. The solid line represents the result 

of our present theory for the tn value of 300. In other words, 

three dashed lines represent the results of Eq. (44'), and 

the solid line the result of Eq. (44). Comparing our present 

theory with the original Balsara and Nauman's, we see that 

the discrepancy between the results of the Balsara and Nau

man's theory and experimental data is essentially caused 

by the fact that the Balsara and Nauman's theory did not 

include the effects of interaction between polymer strands 

in calculating the entropy of polymer-solvent systems. The 

experimental sample used in Figure 6 is demixed polysty

rene (molecular weight=37,000)-methylcyclohexane. Such 

experiments were carried out by Nose and Tan,22 and they 

measured the interfacial tension as a function of temperature 

in addition to the coexistence curve for the system. Thus 

there can be deduced the dependence of the interfacial ten

sion on the composition of the two phases at equilibrium. 

The fact that the ratio of the densities of polystyrene to 

methylcyclohexane in solution has the value of 1.4 is used 

in converting polymer weight fractions to v이ume fractions, 

the values of parameters or constants used in calculation 

are such as RG — 0.27 nm, vs—128 cm3/mol,彻=300, and

7、=300 °K. From Figure 6, it is known that the effect of 

interaction between strands is larger at the lower concentra

tion ratio than at the higher concentration ratio, 0a/4)p. It 

is judged that such an aspect results from the fact that since 

for the lower relative concentration ratio, the structure of 

polymer networks between two liquid phases nearly resem

bles each other, so the total interaction between strands over 

two liquid phases is more largely increased.

In Figure 7, the free energy curves obtained from Eqs. 

(30), (31), and (34) are plotted over the reciprocal strain, 

1/X. The solid line represents the result of the Nose-Tan's 

sample, and the dashed one represents that of the Aarsten- 

Smolders's sample. Since for the Nose-Tan's sample the dis

tance between strands is smaller than for the Aarsten-smol- 

ders's sample, it is self-evident that the values of the free 

energy curve of the Nose-Tan's is larger than those of Aars-

Figure 8. The picture having enlarged Figure 6. As shown pre

viously, the open circles are the experimental data points. Three 

calculated curves of our present theory are offered according 

to three given values of m.

ten-Smolders^. The values of parameters used in calculation 

are the same as those of Figures 5 and 6.

In Figure 8, the picture having enlarged Figure 6 is shown. 

As shown previously, the open circles are the experimental 

data points. Three calculated curves of our present theory 

are offered according to three given values of m (i.e., 100, 

300, and 500).

Conclusion

The original Balsara and Nauman's theory, a kind of phan

tom network theory, for polymer-solvent systems has been 

expanded by adding the term of the topological interaction 

between strands, so our extended theory explains very well 

the characteristics of spinodal decomposition and interfacial 

tension of polymer-solvent systems. The polymer-solvent 

systems considered here are assumed to have the structure 

of the THL network composed of polymer solutes and sol

vents. It is judged that the discrepancy between the experi

mental data and the original Balsara and Nauman's theory 

results from the fact that their original theory did not inc

lude the results of interaction between strands.

It is exposed that the results of the expended theory show 

good agreement with the given experimental data.

Finally, it is judged that the assumption of the THL struc

ture for the given polymer-solvent systems is very reason

able, based upon the fact that the extened theory explains 

very well the given experimental data.
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The relationship between the signs of p巡)and py and validity of the reactivity-selectivity principle (RSP) has

been derived: RSP is valid when W=PHo)'Pm))/p打 is negative. The analysis of 100 reaction series indicated that for 

normal Sn2 reactions involving variations of substituents in the nucleophile (X) and in the substrate (Y) RSP is valid 

only for a dissociative type for which pY(o} is negative, whereas for the acyl transfer reactions with rate-limiting break

down of the tetrahedral intermediate RSP is valid in general for all substituent changes, X, Y and/or Z (substituent 

on the leaving group). The trends in the validity of RSP for certain types of reaction can be useful in supplementing 

the mechanistic criteria based on the signs of pI(0), 阮 and p*

Introduction

Increasing reactivity of a reagent is often accompanied by 

decreasing selectivity. This so-called Reactivity-Selectivity 

Principle (RSP)1 has attracted considerable interests of ex

perimental organic chemists. However, usefulness of RSP 

as a general rule has been questioned, because there are 

so many experimental examples of invalid cases.2 Recently, 

Exner3 has shown in his work involving statistical examina

tion of RSP with 100 reaction series that RSP is valid only 

in half (50%) of the cases studied. He concluded, however, 

that although RSP is not evidently a general rule winvestiga- 

tions of selectivity and its relation to reactivity should be 

continued and used possibly to characterize a certain type 

of reaction or a certain mechanism".

For the past several years we have been developing the 

cross-interaction constants, pt)in eq. 1/ as a mechanistic tool 

for organic reactions in solution.

log(血力伐 oo) = Pi(o)6 + p；(o)0j + (1)

For a typical SN2 TS, Scheme 1, i, j=X, Y or Z where X, 

Y and Z represent the nucleophile, SMbstmte and leaving group,

respectively. pI(o)(or 伤⑹)denotes the Hammett p value for 

variation of g； (or o;) with <y=0 (or o; = 0).

In this work, we examine the relationship between the 

signs of pI(0), p,(o)and(% and the validity of RSP, which can 

be used to characterize a certain type of reaction or mecha

nism, as Exner has suggested in his paper.

Derivation of the Relationship

Let us consider a simple reaction system consisting of


