• Title/Summary/Keyword: Interfacial Layer

Search Result 676, Processing Time 0.028 seconds

TITLE : THE ROLE OF COLLAGEN FIBER IN DENTIN BONDING (치과용복합레진과의 결합에 있어, 상아질 내 교원섬유의 역할에 관한 연구)

  • Park, Seong-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.470-478
    • /
    • 1997
  • The purpose of this study was to investigate the effects of moistening mechods of dentin on the morphologic states of hybrid layers and on the interfacial bond strength between dentin and composite. Specimens were divided into 6 groups based on the surface moistening methods and materials used. After the dentin surface was conditioned with 10 % phoporic acid and irrigated: 1. The dentin surface was dried. Then bonding agent and composite were applied. 2. The dentin surface was blot-dryed. Then primer, bonding atent and composite were applied. 3. The dentin surface was dryed first. Within 20 seconds, the surface was rewetted, then primer, bonding agent and composite were applied. 4. The dentin surface was dryed. Then primer, bonding agnent and composite were applied. 5. The dentin surface was dryed first. Atter 24hrs, the surface was rewetted, and then primer, bonding agent and composite were applied. 6. The surface was conditioned with NaOCl for 5min. Then primer, bonding agent and composite were applied. To reveal the hybrid layer, scanning electron microscopy was used after the samples were ion beam etched. The shear bond strength of each group was tom pared by ANOVA. In groups 2, 3 and 4, the hybrid layer was clearly visible, but the width was more limited in group 4. In group 1 and 5, the hybrid layer was not found, and a gap was formed between dentin and composite. In group 6, the hybrid layer was not found, but the interface between the dentin and composite was intimate. The shear bond strength of each group was as follows: Group 1 : 4MPa, Group 2 : 14MPa, Group 3 : 12MPa, Group 4 : 14MPa, Group 5 : 5MPa, Group 6 : 9MPa.

  • PDF

Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-\delta (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting

  • Nie, Lifang;Liu, Ze;Liu, Mingfei;Yang, Lei;Zhang, Yujun;Liu, Meilin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode. Examination of the microstructures of the as-prepared LSCF cathode using an SEM revealed that both grain size and porosity changed gradually from the catalytically active layer (near the electrodeelectrolyte interface) to the current collection layer (near the electrode-interconnect interface). Impedance analysis showed that a 3-layer LSCF cathode with graded microstructures exhibited much-improved performance compared to that of a single-layer LSCF cathode, corresponding to interfacial resistance of 0.053, 0.11, and 0.27 $\Omega{\cdot}cm^2$ at 800, 750, and $700^{\circ}C$ respectively.

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Development of Curing Process for EMC Encapsulation of Ultra-thin Semiconductor Package (초박형 반도체 패키지의 EMC encapsulation을 위한 경화 공정 개발)

  • Park, Seong Yeon;On, Seung Yoon;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.47-50
    • /
    • 2021
  • In this paper, the Curing process for Epoxy Molding Compound (EMC) Package was developed by comparing the performance of the EMC/Cu Bi-layer package manufactured by the conventional Hot Press process system and Carbon Nanotubes (CNT) Heater process system of the surface heating system. The viscosity of EMC was measured by using a rheometer for the curing cycle of the CNT Heater. In the EMC/Cu Bi-layer Package manufactured through the two process methods by mentioned above, the voids inside the EMC was analyzed using an optical microscope. In addition, the interfacial void and warpage of the EMC/Cu Bi-layer Package were analyzed through C-Scanning Acoustic Microscope and 3D-Digital Image Correlation. According to these experimental results, it was confirmed that there was neither void in the EMC interior nor difference in the warpage at room temperature, the zero-warpage temperature and the change in warpage.

Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface (흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구)

  • Kim, Kyoung-Ho;Lee, Yoonjoo;Shin, Yun-Ji;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.

Fabrication of Hydrophilic PEGDA Hydrogel-supported Forward Osmosis Membranes (친수성 PEGDA 하이드로젤 지지체 기반 FO 분리막의 제조)

  • Dal Yong Kim;Sung-Joon Park;Jung-Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.383-389
    • /
    • 2023
  • A high-performance forward osmosis (FO) membrane was prepared using polyethylene glycol diacrylate (PEGDA) hydrogel as a support layer. Through the UV-induced polymerization and subsequent phase separation of PEGDA, the crosslinked, hydrophilic, and porous PEGDA suppor layer was obtained. To achieve high FO flux and salt selectivity using the fabricated PEGDA support, a selective layer was synthesized via the toluene-assisted interfacial polymerization (TIP), in which toluene is used as an organic solvent. The prepared PEGDA-based FO membrane showed higher FO water flux and lower salt selectivity compared with commercial HTI membranes using 1.0 M NaCl draw solution and DI water feed solution. We propose the strategy to fabricate high-performance FO membranes utilizing supports formed with new hydrophilic materials and fabrication processes.

Diffusion Behaviors of B and P at the Interfaces of Si/$SiO_2$ Multilayer System After the Annealing Process

  • Jang, Jong-Shik;Kang, Hee-Jae;Hwang, Hyun-Hye;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.232-232
    • /
    • 2012
  • The doping of semiconducting elements is essential for the development of silicon quantum dot (QD) solar cells. Especially the doping elements should be activated by substitution at the crystalline sites in the crystalline silicon QDs. However, no analysis technique has been developed for the analysis of the activated dopants in silicon QDs in $SiO_2$ matrix. Secondary ion mass spectrometry (SIMS) is a powerful technique for the in-depth analysis of solid materials and the impurities analysis of boron and phosphorus in semiconductor materials. For the study of diffusion behaviour of B and P by SIMS, Si/$SiO_2$ multilayer films doped by B or P were fabricated and annealed at high temperatures for the activated doping of B and P. The distributions of doping elements were analyzed by SIMS. Boron found to be preferentially distributed in Si layer rather than the $SiO_2$ layer. Especially the B in the Si layers was separated to two components of an interfacial component and a central one. The central component was understood as the activated elements. On the other hand, phosphorus did not show any preferred diffusion.

  • PDF

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF