• Title/Summary/Keyword: Interfacial Layer

검색결과 676건 처리시간 0.029초

치경부 마모병소의 상아질 표면처리 방식에 따른 상아질과 접착제 간의 계면 양상 (INTERFACIAL MORPHOLOGY BETWEEN DENTIN AND ADHESIVES ACCORDING TO TREATMENT OF DENTIN SURFACE OF CERVICAL ABRASION LESION)

  • 이용희;이희주;허복
    • Restorative Dentistry and Endodontics
    • /
    • 제26권1호
    • /
    • pp.51-63
    • /
    • 2001
  • In order to know the effect of dentin bonding agents on the restoration of cervical abrasion, Scotchbond Multipurpose Single Bond and Clearfil Liner Bond 2 were used in 51 teeth with abrasion lesion and normal teeth. The surface structure and dentinal tubules of acid etched dentin and resin replica were examined using scanning electron microscopy. The interfacial morphology between dentin and adhesives was investigated by confocal laser scanning microscopy. Following results were obtained. 1. The hybrid layer and resin tag of the dentin showing cross-sectional surface of dentinal tubules are thicker and longer than those of dentin showing oblique surface of dentinal tubules. 2. The sclerotic cast was frequently observed in dentinal tubule, and the cast looked like cuboidal or rhomboidal-shaped crystals clumped from outer side to inner side. 3. The formation of hybrid layer and resin tag was the most prominent in Scotchbond Multipurpose group, whereas Clearfil Liner Bond 2 group showed very poor formation. The formation of hybrid layer and resin tag in Single Bond group was less than Scotchbond Multipurpose group.

  • PDF

산화막과 금속박막 계면에서의 adhesion 개선을 위한 열처리 (Annealing for Improving adhesion between Metal layer and Oxide layer)

  • 김응수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.225-228
    • /
    • 2002
  • The adhesion effect between the oxide layer and the metal layer has been studied by RTP anneal. Two types of oxides, BPSG and P-TEOS, were used as a bottom layer under multi-layered metal film. We observe the interface between oxide and metal layer using SEM (scanning electron microscopy), TEM (transmission electron microscopy), AES (auger electron spectroscopy). Adhesion failure was occurred by interfacial reaction between the BPSG oxide and the multi-layered metal film at 650"C RTP anneal. The phosphorus rich layer was observed at interface between BPSG oxide and metal layer by AES and TEM measurements. On the other hand adhesion was a)ways good in the sample used P-TEOS oxide as a bottom layer. We have known that adhesion between BPSG and multi-layered metal film was improved when the sample was annealed below $650^{\circ}C$.TEX>.

  • PDF

Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구 (A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer)

  • 신안섭;옥대율;정기호;김민주;박창식;공진호;허철호
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성 (A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure)

  • 박흥일;김창업;허보영;이성렬;김창규
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network

  • Bensattalah Aissa;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.517-527
    • /
    • 2023
  • The severe deterioration of structures has led to extensive research on the development of structural repair techniques using composite materials. Consequently, previous researchers have devised various analytical methods to predict the interface performance of bonded repairs. However, these analytical solutions are highly complex mathematically and necessitate numerous calculations with a large number of iterations to obtain the output parameters. In this paper, an artificial neural network prediction models is used to calculate the interfacial stress distribution in RC beams strengthened with FRP sheet. The R2value for the training data is evaluated as 0.99, and for the testing data, it is 0.92. Closed-form solutions are derived for RC beams strengthened with composite sheets simply supported at both ends and verified through direct comparisons with existing results. A comparative study of peak interfacial shear and normal stresses with the literature gives the usefulness and effectiveness of ANN proposed. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP sheet.

Effects of Sr Additions on the Interfacial Reaction Layers Formed between Liquid Al-Si-Cu Alloy and Cast Iron

  • Kyoung-Min Min;Je-Sik Shin;Jeong-Min Kim
    • 한국재료학회지
    • /
    • 제33권9호
    • /
    • pp.353-359
    • /
    • 2023
  • This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • 제38권1호
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.

정상염수(定常塩水)쐐기에 있어서의 계면저항계수(界面低抗係數)의 평가(評價) (Interfacial Friction Factor in Arrested Saline Wedge)

  • 이문옥;무로타 아키라
    • 대한토목학회논문집
    • /
    • 제9권1호
    • /
    • pp.53-62
    • /
    • 1989
  • 점변일차원이층류(漸變一次元二層流)모델로서의 염수(塩水)쐐기형상(形狀)의 계산(計算)을 행함에 있어서 필요(必要)한 계면저항계수(界面低抗係數)의 평가수단(評價手段)에 대(對)하여 논(論)한다. 예(例)를 들면, 폭(幅)이 좁은 실험수로(實驗水路)에서 얻어진 염수(塩水)쐐기의 형상(形狀)에 의해 계면저항계수(界面低抗係數)를 역산(逆算)하는 경우는 실제(實際)의 하천(河川)에서는 무시(無視)할 수 있는 수로(水路)의 측벽(側壁)의 영향(影響)을 보정(補正)하지 않으면 안된다. 본연구(本硏究)에서는 이러한 점(點)을 고려(考慮), 정상(定常) 염수(塩水)쐐기의 형상(形狀) 및 계면저항계수(界面低抗係數)에 미치는 수로(水路)의 측벽(側壁)의 영향(影響)을 밝힌다.

  • PDF

나노 인덴테이션을 통한 경량 고강도 콘크리트 Interfacial Transition Zone (ITZ)의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Interfacial Transition Zone (ITZ) of Lightweight High Strength Concrete Via Nanoindentation)

  • 임수민;배성철
    • 한국건설순환자원학회논문집
    • /
    • 제8권4호
    • /
    • pp.537-544
    • /
    • 2020
  • Interfacial transition zone (ITZ)은 골재-시멘트 복합체 사이의 영역으로써, 콘크리트에서 가장 취약한 영역으로 알려져 있으며, 이는 점진적으로 변화하는 불균질한 상으로 이루어져 있다. 경량 고강도 콘크리트 개발을 위해 물-바인더 비가 낮은 고강도 시멘트 복합체와 경량골재 사이의 Interfacial transition zone (ITZ)의 역학적 특성 평가는 필수적이다. 하지만 ITZ는 복잡하고 다공성 구조를 가지고 있기 때문에, 이의 역학적 특성은 아직 명확하지 않다. 또한, 경량골재 ITZ는 일반골재보다 다양한 변수 (물-바인더 비, 골재의 흡수율, 양생조건 등)에 의해 변화한다. 따라서 본 연구에서 골재의 종류 및 크기에 따른 ITZ의 역학적 특성을 분석하고자 한다. 이를 위해 나노 인덴테이션 기법을 이용하여 물-바인더 비가 0.2인 고강도 시멘트 복합체와 표준사 및 최대치수가 각각 2mm, 5mm인 경량골재 ITZ의 탄성계수를 측정하였다.

미세 Cu 배선 적용을 위한 SiNx/Co/Cu 박막구조에서 Co층이 계면 신뢰성에 미치는 영향 분석 (Effect of Co Interlayer on the Interfacial Reliability of SiNx/Co/Cu Thin Film Structure for Advanced Cu Interconnects)

  • 이현철;정민수;김가희;손기락;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.41-47
    • /
    • 2020
  • 비메모리 반도체 미세 Cu배선의 전기적 신뢰성 향상을 위해 SiNx 피복층(capping layer)과 Cu 배선 사이 50 nm 두께의 Co 박막층 삽입이 계면 신뢰성에 미치는 영향을 double-cantilever beam (DCB) 접착력 측정법으로 평가하였다. DCB 평가 결과 SiNx/Cu 구조는 계면접착에너지가 0.90 J/㎡이었으나 SiNx/Co/Cu 구조에서는 9.59 J/㎡으로 SiNx/Cu 구조보다 약 10배 높게 측정되었다. 대기중에서 200℃, 24시간 동안 후속 열처리 진행한 결과 SiNx/Cu 구조는 0.93 J/㎡으로 계면접착에너지의 변화가 거의 없는 것으로 확인되었으나 SiNx/Co/Cu 구조에서는 2.41 J/㎡으로 열처리 전보다 크게 감소한 것을 확인하였다. X-선 광전자 분광법 분석 결과 SiNx/Cu 도금층 사이에 Co를 증착 시킴으로써 SiNx/Co 계면에 CoSi2 반응층이 형성되어 SiNx/Co/Cu 구조의 계면접착에너지가 매우 높은 것으로 판단된다. 또한 대기중 고온에서 장시간 후속 열처리에 의해 SiNx/Co 계면에 지속적으로 유입된 산소로 인한 Co 산화막 형성이 계면접착에너지 저하의 주요인으로 판단된다.