DOI QR코드

DOI QR Code

Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network

  • Bensattalah Aissa (Faculty of Applied Sciences, Department of Civil Engineering, University of Tiaret) ;
  • Benferhat Rabia (Faculty of Applied Sciences, Department of Civil Engineering, University of Tiaret) ;
  • Hassaine Daouadji Tahar (Faculty of Applied Sciences, Department of Civil Engineering, University of Tiaret)
  • Received : 2023.01.10
  • Accepted : 2023.08.07
  • Published : 2023.09.25

Abstract

The severe deterioration of structures has led to extensive research on the development of structural repair techniques using composite materials. Consequently, previous researchers have devised various analytical methods to predict the interface performance of bonded repairs. However, these analytical solutions are highly complex mathematically and necessitate numerous calculations with a large number of iterations to obtain the output parameters. In this paper, an artificial neural network prediction models is used to calculate the interfacial stress distribution in RC beams strengthened with FRP sheet. The R2value for the training data is evaluated as 0.99, and for the testing data, it is 0.92. Closed-form solutions are derived for RC beams strengthened with composite sheets simply supported at both ends and verified through direct comparisons with existing results. A comparative study of peak interfacial shear and normal stresses with the literature gives the usefulness and effectiveness of ANN proposed. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP sheet.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002and by the University of Tiaret, in Algeria.

References

  1. Abbes, B., Benhenni, M.A., Daouadji, T.H., Abbes, F., Adim, B. and Li, Y. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2022b), "Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported", Steel Compos. Struct., 45(4), 591-603. https://doi.org/10.12989/scs.2022.45.4.591.
  5. Abderezak, R., Daouadji, T.H. and Tayeb, B. (2023), "Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material", Struct. Eng. Mech., 85(5), 573-592. https://doi.org/10.12989/sem.2023.85.5.573.
  6. Abuodeh, O., Abdalla, J.A. and Hawileh, R.A. (2019), "Predicting the shear capacity of FRP in shear strengthened RC beams using ANN and NID", 2019 8th International Conference on Modeling Simulation and Applied Optimization ICMSAO, 1-5. https://doi.org/10.1109/ICMSAO.2019.8880284.
  7. Altabey, W.A. (2017), "Prediction of natural frequency of basalt fiber reinforced polymer (FRP) laminated variable thickness plates with intermediate elastic support using artificial neural networks (ANNs) method", J. Vibroeng., 19(5), 3668-3678. https://doi.org/10.21595/jve.2017.18209.
  8. Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, s102-s122. https://doi.org/10.1080/19648189.2016.1246693.
  9. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2020a), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.
  10. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  11. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.119.
  12. Cascardi, A. and Micelli, F. (2021), "ANN-based model for the prediction of the bond strength between FRP and concrete", Fiber., 9(7), 46. https://doi.org/10.3390/fib9070046.
  13. Devnath, I., Islam, M.N., Siddique, M.U.M. and Tounsi, A. (2022), "Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem", Adv. Nano Res., 12(2), 139-150. https://doi.org/10.12989/anr.2022.12.2.139.
  14. Douma, O.B., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(1), 707-718. https://doi.org/10.1007/s00521-016-2368-7.
  15. Duong, H.T., Phan, H.C., Tran, T.M. and Dhar, A.S. (2021), "Assessment of critical buckling load of functionally graded plates using artificial neural network modeling", Neur. Comput. Appl., 33(23), 16425-16437. https://doi.org/10.1007/s00521-021-06238-6.
  16. Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabduljabbar, H., Ostrowski, K.A. and Malazdrewicz, S. (2021), "A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash", Mater., 14(17), 4934. https://doi.org/10.3390/ma14174934.
  17. Hassaine Daouadji T., Rabahi A., Benferhat R. and A. Tounsi (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  18. Hassaine Daouadji, T. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  19. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  20. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2021a), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  21. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531.
  22. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2022), "New technique for repairing circular steel beams by FRP plate", Adv. Mater. Res., 11(3), 171-190. https://doi.org/10.12989/amr.2022.11.3.171.
  23. Hassaine Daouadji, T., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  24. Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, Macmillan, New York.
  25. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  26. Hu, T., Zhang, H. and Zhou, J. (2023), "Machine learning-based model for recognizing the failure modes of FRP-strengthened RC beams in flexure", Case Stud. Constr. Mater., 18, e02076. https://doi.org/10.1016/j.cscm.2023.e02076.
  27. Jahangir, H. and Eidgahee, D.R. (2021), "A new and robust hybrid artificial bee colony algorithm-ANN model for FRP-concrete bond strength evaluation", Compos. Struct., 257, 113160. https://doi.org/10.1016/j.compstruct.2020.113160.
  28. Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018), "Stochastic investigation of natural frequency for functionally graded plates", IOP Conf. Ser.: Mater. Sci. Eng., 326(1), 012003. https://doi.org/10.1088/1757-899X/326/1/012003.
  29. Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. and Ozvan, A. (2009), "A modeling of the angle of shearing resistance of soils using soft computing systems", Exp. Syst. Appl., 36, 11814-11826. https://doi.org/10.1016/j.eswa.2009.04.008.
  30. Kekez, S. and Krzywon, R. (2022), "Prediction of bonding strength of externally bonded SRP composites using artificial neural networks", Mater., 15(4), 1314. https://doi.org/10.3390/ma15041314.
  31. Koroglu, M.A. (2019), "Artificial neural network for predicting the flexural bond strength of FRP bars in concrete", Sci. Eng. Compos. Mater., 26(1), 12-29. https://doi.org/10.1515/secm2017-0155.
  32. Kumar, A., Arora, H.C., Kapoor, N.R. and Kumar, A. (2023), "Machine learning models in prediction of strength parameters of FRP-wrapped RC beams", Machine Intelligence, Big Data Analytics in Image Processing: Practical Applications, 419-446.
  33. Lau, K.T., Dutta, P.K., Zhou, L.M. and Hui, D. (2001), "Mechanics of bonds in a FRP bonded concrete beam", J. Compos. Part B, 32, 491-502. https://doi.org/10.1016/j.eswa.2009.04.008.
  34. Le, T.T., Duong, H.T. and Phan, H.C. (2023), "Optimization of Neural Network architecture and derivation of closed-form equation to predict ultimate load of functionally graded material plate", Adv. Mech. Eng., 15(5), 16878132231175002. ttps://doi.org/10.1177/168781322311750.
  35. Mahmoud, S.R., Ghandourah, E., Ali, A., Balubaid, M. and Tounsi, A. (2022), "On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model", Arch. Civil Mech. Eng., 22, 186. https://doi.org/10.1007/s43452-022-00506-5.
  36. Nasab, M.N., Jahangir, H., Hasani, H., Majidi, M.H. and Khorashadizadeh, S. (2023), "Estimating the punching shear capacities of concrete slabs reinforced by steel and FRP rebars with ANN-Based GUI toolbox", Struct., 50, 1204-1221. https://doi.org/10.1016/j.istruc.2023.02.072.
  37. Rabahi A., Hassaine Daouadji T. and Benferhat R. (2021d), "New solution for damaged porous RC cantilever beams strengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169.
  38. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021c), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299.
  39. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2022a), "Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force", Adv. Mater. Res., 11(2), 91-109. https://doi.org/10.12989/amr.2022.11.2.091.
  40. Rabahi, A., Hassaine Daouadji, T., Boussad, A., Benferhat, R., Adim, B. and Fazilay, A. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257.
  41. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  42. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019a), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  43. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019b), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  44. Rabia, B., Tahar, H.D. and Abderezak, R. (2020b), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  45. Rabinovich, O. and Frostig, Y. (2000), "Closed-from high order analysis of RC beams strengthened with FRP strips", J. Compos. Constr., 4(2), 65-74. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:2(65).
  46. Sezer, A. (2013), "Simple models for the estimation of shearing resistance angle of uniform sands", Neur. Comput. Appl., 22(1), 111-123. https://doi.org/10.1007/s00521-011-0668-5.
  47. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated RC beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0.
  48. Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fiber reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4) 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  49. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Couple. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  50. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., 9(2), 133-153. http://doi.org/10.12989/amr.2020.9.2.133.
  51. Tizpa, P., Chenari, R.J., Fard, M.K. and Machado, S.L. (2015), "NN prediction of some geotechnical properties of soil from their index parameters", Arab. J. Geosci., 8(5), 2911-2920. https://doi.org/10.1007/s12517-014-1304-3.
  52. Tlidji, Y., Tounsi, A. and Luan Cong, T. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using State-space approach", Adv. Nano Res., 13(5), 453-463. https://doi.org/10.12989/anr.2022.13.5.453.
  53. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  54. Tounsi, A. and Benyoucef, S. (2007), "Interfacial stresses in externally FRP-plated concrete beams", Int. J. Adhes. Adhesiv., 27, 207-215. https://doi.org/10.1016/j.ijadhadh.2006.01.009.
  55. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Addabedia, E.A. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", J. Adhes. Adhesiv., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  56. Wakjira, T.G., Al-Hamrani, A., Ebead, U. and Alnahhal, W. (2022), "Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models", Compos. Struct., 287, 115381. https://doi.org/10.1016/j.compstruct.2022.115381.
  57. Yaman, M.A., Abd Elaty, M. and Taman, M. (2017), "Predicting the ingredients of self compacting concrete using artificial neural network", Alex. Eng. J., 56(4), 523-532. http://doi.org/10.1016/j.aej.2017.04.007.
  58. Yang, Z., Liu, S., Yu, L. and Xu, L. (2021), "A comprehensive study on the hardening features and performance of self-compacting concrete with high-volume fly ash and slag", Mater., 14(15), 4286. https://doi.org/10.3390/ ma14154286.
  59. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.