• Title/Summary/Keyword: Interfacial Layer

Search Result 681, Processing Time 0.031 seconds

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

Experimental Study on the Behaviour of Interfacial Layer in Saltwater Wedge (정상염수쐐기 경계층 거동에 대한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Choi, Jae Hoon;Seo, Il Won;Kwon, Jae Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.833-842
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the behaviour of interfacial layer of saltwater wedge in estuary. Experimental conditions have been established according to densimetric Froude number, which is a dimensionless number comparing inertia force with buoyancy due to the density difference. To observe the behaviour of saltwater wedge, conductivity meter has been used to detect salinity. Time averaged and temporal variation of observed properties have been analyzed to determine and investigate the interfacial layer. The location and profile of interfacial layers have shown the dependency on densimetric Froude number. The thickness of interfacial layer has been also dependent on the variation of densimetric Froude number.

Fabrication and Fracture Properties of Nb/MoSi2Laminate Composites (Nb/MoSi2적층복합재료의 제조 및 파괴특성)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1047-1052
    • /
    • 2002
  • The impact value, the interfacial shear strength, the tensile strength and the fracture strain of Nb/MoSi$_2$laminate composites, which were associated with the interfacial reaction layer, have been investigated. Three types of Nb/MoSi$_2$ laminate composites alternating sintered MoSi$_2$ layers and Nb foils were fabricated as the parameter of hot press temperature. The thickness of interfacial reaction layer of Nb/MoSi$_2$ laminate composites increased with increasing the fabrication temperature. The growth of interfacial reaction layer increased the interfacial shear strength and led to the decrease of impact value in Nb/MoSi$_2$ laminate composites. It was also found that in order to maximize the fracture energy of Nb/MoSi$_2$ laminate composites, interfacial shear strength and the thickness of interfacial reaction layer must be secured appropriately.

Pyromellitic dianhydride as a cathode interfacial layer in the organic light emitting diodes: thickness optimization and its electroluminescent characteristics

  • Nam, Eun-Kyoung;Moon, Mi-Ran;Son, Dong-Jin;Park, Keun-Hee;Jung, Dong-Geun;Kim, Hyoung-Sub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.837-838
    • /
    • 2009
  • In this work, pyromellitic dianhydride (PMDA) was used as a cathode interfacial layer in the organic light emitting diodes (OLEDs) and its thickness was optimized. Various electrical and optical characterizations of the OLEDs having various thicknesses of the PMDA cathode interfacial layer revealed that the best OLED performance could be achieved by using 0.5 nm-thick PMDA layer compared to the control device without any interfacial layer.

  • PDF

Impact Fracture and Shear Strength Characteristics on Interfacial Reaction Layer of Nb/MoSi2 Laminate Composite

  • Lee, Sang-Pill;Yoon, Han-Ki;Park, Won-Jo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2000
  • The present study dealt with the relationships among the interfacial shear strength, the thickness of interfacial reaction layer and the impact value of $Nb/MoSi_2$ laminate composites. In addition, the tensile test was conducted to evaluate the fracture strain of $Nb/MoSi_2$ laminate composites. To change the thickness of the reaction layer, $Nb/MoSi_2$ laminate composites alternating sintered MoSi2 layers and Nb foils were fabricated as the parameter of hot press temperature. It has been found that the growth of the reaction layer increases the interfacial shear strength and decreases the impact value by localizing a plastic deformation of Nb foil. There also exist appropriate shear strength and the thickness of the reaction layer, which are capable of maximizing the fracture energy of $Nb/MoSi_2$.

  • PDF

Improvement of hole transport from p-Si with interfacial layers for silicon solar cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.239.2-239.2
    • /
    • 2016
  • Numerous studies and approaches have been performed for solar cells to improve their photoelectric conversion efficiencies. Among them, the study for electrode containing transparent conducting oxide (TCO) layers is one of issues as well as for the cell structure based on band theory. In this study, we focused on an interfacial layer between p-type silicon and indium tin oxide (ITO) well-known as TCO materials. According to current-voltage characteristics for the sample with the interfacial layers, the improvement of band alignment between p-type silicon and ITO was observed, and their ohmic properties were enhanced in the proper condition of deposition. To investigate cause of this improvement, spectroscopic ellipsometry and ultraviolet photoelectron spectroscopy were utilized. Using these techniques, band alignment and defect in the band gap were examined. The major materials of the interfacial layer are vanadium oxide and tungsten oxide, which are notable as a hole transfer layer in the organic solar cells. Finally, the interfacial layer was applied to silicon solar cells to see the actual behavior of carriers in the solar cells. In the case of vanadium oxide, we found 10% of improvement of photoelectric conversion efficiencies, compared to solar cells without interfacial layers.

  • PDF

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal (Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향)

  • Kim, In-Kyu;Song, Jun-Young;Lee, Young Sun;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties (압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과)

  • Song, Jun-Young;Kim, In-Kyu;Lee, Young-Seon;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF