• 제목/요약/키워드: Interfacial Force

검색결과 159건 처리시간 0.022초

마이크로 채널 내의 이상유동에 대한 실험 및 수치해석적 연구 (Experimental and Numerical Study on the Binary Fluid Flows in a Micro Channel)

  • 박재현;허형석;서용권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.86-91
    • /
    • 2006
  • In this parer, we present the bubble forming and motion in the micro channel by using the two-dimensional numerical computation and experiment. In the numerical computation, The Lattice Boltzmann method(LBM) and free-energy model is used to treat the interfacial force and deformation of binary fluid system, drawn in to a micro channel and a numerical simulation is carried out by using the parallel computation method. The urn in this investigation is to examine the applicability of LBM to numerical analysis and experimental method of binary fluid separation and motion in the micro channel.

  • PDF

An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams

  • Sun, Kai Q.;Zhang, Nan;Liu, Xiao;Tao, Yan X.
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.281-291
    • /
    • 2021
  • An equivalent single-layer theory (EST) is put forward for analyzing free vibrations of steel-concrete composite beams (SCCB) based on a higher-order beam theory. In the EST, the effect of partial interaction between sub-beams and the transverse shear deformation are taken into account. After using the interlaminar shear force continuity condition and the shear stress free conditions at the top and bottom surface, the displacement function of the EST does not contain the first derivatives of transverse displacement. Therefore, the C0 interpolation functions are just demanded during its finite element implementation. Finally, the EST is validated by comparing the results of two simply-supported steel-concrete composite beams which are tested in laboratory and calculated by ANSYS software. Then, the influencing factors for free vibrations of SCCB are analyzed, such as, different boundary conditions, depth to span ratio, high-order shear terms, and interfacial shear connector stiffness.

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Effect of Ar+ Ion Irradiation of Polymeric Fiber on Interface and Mechanical Properties of Cementitious Composites

  • Seong, Jin-Wook;Lee, Seung-Hun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • 한국세라믹학회지
    • /
    • 제41권6호
    • /
    • pp.430-434
    • /
    • 2004
  • The values of fracture energy and mechanical flexural strength of Fiber Reinforced Cement (FRC) with polypropylene (PP) fiber modified by Ion Assisted Reaction (JAR), by which functional groups were grafted on the surface of PP fiber, was improved about 2 times as those of fracture energy and flexural strength of cement reinforced by untreated PP fiber. PP fiber was irradiated in O$_2$ environment by Ar$\^$+/ ion. The contact angle of PP treated by IAR decreased largely when compared with untreated PP. From this result, we expected that surface energy and interfacial adhesion force of treated PP fiber increased. The strain hardening occurred in the strain-stress curve of FRC including PP treated by IAR when compared with that of FRC with untreated PP. These enhanced mechanical properties might be due to strong interaction between hydrophilic group on modified PP fiber and hydroxyl group in cement matrix. This hydrophilic group on surface modified PP fiber was confirmed by XPS analysis. We clearly observed hydration products that were fixed at modified PP fiber due to the strong adhesion force of interface in cement reinforced modified PP by SEM (Scanning Electron Microscopy) study.

Properties of Dy-doped $La_2O_3$ buffer layer for Fe-FETs with Metal/Ferroelectric/Insulator/Si structure

  • Im, Jong-Hyun;Kim, Kwi-Jung;Jeong, Shin-Woo;Jung, Jong-Ill;Han, Hui-Seong;Jeon, Ho-Seung;Park, Byung-Eun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2009
  • The Metal-ferroelectric-semiconductor (MFS) structure has superior advantages such as high density integration and non-destructive read-out operation. However, to obtain the desired electrical characteristics of an MFS structure is difficult because of interfacial reactions between ferroelectric thin film and Si substrate. As an alternative solution, the MFS structure with buffer insulating layer, i.e. metal-ferroelectric-insulator-semiconductor (MFIS), has been proposed to improve the interfacial properties. Insulators investigated as a buffer insulator in a MFIS structure, include $Ta_2O_5$, $HfO_2$, and $ZrO_2$ which are mainly high-k dielectrics. In this study, we prepared the Dy-doped $La_2O_3$ solution buffer layer as an insulator. To form a Dy-doped $La_2O_3$ buffer layer, the solution was spin-coated on p-type Si(100) wafer. The coated Dy-doped $La_2O_3$ films were annealed at various temperatures by rapid thermal annealing (RTA). To evaluate electrical properties, Au electrodes were thermally evaporated onto the surface of the samples. Finally, we observed the surface morphology and crystallization quality of the Dy-doped $La_2O_3$ on Si using atomic force microscopy (AFM) and x-ray diffractometer (XRD), respectively. To evaluate electrical properties, the capacitance-voltage (C-V) and current density-voltage (J-V) characteristics of Au/Dy-doped La2O3/Si structure were measured.

  • PDF

발치후 임프란트 매식 시기에 따른 골유착에 관한 연구;조직형태계측학적 및 생역학적 연구 (Effects of Different Timing of Implant Insertion on Osseointegration After Tooth Extraction;Histomorphometric and Biomechanical Studies)

  • 오희균;류선열
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제16권3호
    • /
    • pp.477-497
    • /
    • 1994
  • The purpose of this study was to investigate the effect of timing of implant insertion on osseointegration after tooth extraction. Fifteen mongrel dogs, weighing 15kg or more, were used. The lower right 1st, 2nd, 3rd, 4th premolars and 1st molar were extracted under general anesthesia. Implants were inserted at 2, 4, and 8 weeks after extraction of the teeth, being designated as 2-, 4-, and 8-week groups, respectively. Results obtained were as follows. 1. Macroscopically there was neither an infection at the implant site nor an exposure of the implant. 2. Histologically the surrounding bone of the implant was less mature in the 2-week group than in the 4- and 8-week groups. 3. The implant-bone contact ranged from 75 to 82%, with no significant differences among the groups. No increase in the implant-bone contact was found with increasing healing periods from 4 to 12 weeks after implant insertions. 4. The average depth (0.64mm) of the fibrous connective tissue ingrowth in the 2-week group was slightly deeper than those in the 4- (0.51mm) and 8-week (0.53mm) groups at 12 weeks after implant insertion. 5. the implant-bone interfacial bond strengths were 73.05 kgf in the 2-week group, 69.71 kgf in the 4-week group and 73.76 kgf in the 8-week group. No significant difference was noted in pullout force among the groups. The degree of confidence of interfacial bone strength was highest in the 8-week group, followed by the 4- and 2-week groups. These results indicate that at least 4 weeks of healing period will be required before implant is to be inserted following tooth extraction.

  • PDF

Ni-20 Cr계 분말의 기계적 합금화 과정에 대한 고찰 (Discussion on the Mechanical Alloying Process of Ni-20Cr alloy)

  • 유명기;최주
    • 분석과학
    • /
    • 제6권2호
    • /
    • pp.197-205
    • /
    • 1993
  • 닉켈과 크롬 20% 혼합분말을 실험실용 아트리터에서 시간을 달리하여 밀링하였고 입도분포, 미세조직 및 X-레이 회절 특성을 조사하였다. 합금화 상태를 확인하고자 포화자화값과 보자력값을 측정하였고 플라즈마 용해 잉곳 경우와 비교하였다. 기계적 합금화는 분말의 미세화 단계 후 크롬이 닉켈 속으로 확산이 일어나는 계면적의 증가에 의해서 진행하였다. 그러나 15시간 이상 밀링 후 서브 미크론 크기의 결정립으로 정상상태가 이루어졌음에도 불구하고 용해 잉곳과 같이 조성적으로 균일한 고용합금의 자성특성이 관찰되지 않았다. 밀링 시간이 길어질수록 결정립의 크기는 미세화되었으며 합금층이 증가하였다. 따라서 조성의 균질화는 분말의 소성변형에 의해서 일어나는 성분분말 사이의 계면적 증가와 계면내에서 입계 또는 전위와 같은 격자결함을 통해 크롬의 닉켈 속으로 확산에 의해서 율속되는 것으로 생각된다.

  • PDF

폴리케톤과 고무의 접착성에 미치는 산처리의 영향 (The Effect of Acid Treatment on the Adhesion Property of Polyketone with Rubber)

  • 최혜영;이태상;이종;이승구
    • 접착 및 계면
    • /
    • 제12권1호
    • /
    • pp.26-33
    • /
    • 2011
  • 폴리케톤 필름의 산처리 조건에 따른 필름 표면의 화학적인 변화를 접촉각과 XPS를 이용하여 분석하고, 모폴로지의 변화를 SEM과 AFM을 통하여 살펴보고, 최종적으로 이러한 변화가 폴리케톤 필름과 고무와의 계면접착력에 어떠한 영향을 미치는지를 살펴보았다. 인산처리에 의하여 폴리케톤 필름의 표면에 젖음성이 증가하여 인산의 농도 및 처리시간에 따라서 접촉각이 감소하였으며, 표면에 산소함유기들이 증가하는 결과를 보였다. 인산농도와 처리시간이 증가함에 따라 표면에 crack과 etching이 증가하여 표면거칠기가 증가하였으나, 산처리 조건이 강화되면서 폴리케톤 필름의 표면에 degradation이 발생하여 roughness가 감소하는 결과를 보였다. 폴리케톤과 고무와의 계면접착력을 살펴본 결과, pH 0.74에서 120 min, pH 0.4에서 60 min 처리한 경우에 최대 계면접착력을 보였으며, 산처리 조건이 그 이상으로 증가하면서 degradation이 발생하면서 계면접착력이 감소하였다.

$SiO_2$와 Co/Nb 이중층 구조의 상호반응 (Interaction of Co/Nb Bilayer with $SiO_2$ Substrate)

  • 권영재;이종무;배대록;강호규
    • 한국재료학회지
    • /
    • 제8권10호
    • /
    • pp.956-960
    • /
    • 1998
  • XPS와 glancing angle XRD, AES 및 AFM을 사용하여 $330^{\circ}C$-$800^{\circ}C$사이의 진공분위기에서 열처리할 때, Co/Nb이중층과 $SiO_2$기판 사이의 계면반응을 조사하였다. $600^{\circ}C$에서 Co와 Nb는 서로 활발하게 확산하여, $700^{\circ}C$이상에서는 두 층사이의 충역전이 완전히 일어났다. 그 때 Nb 중간층과 $SiO_2$기판 사이의 반응에 의하여 계면에 일부 NbO가 형성되었으며, 표면에서는 분위기 중의 산소에 의하여 $Nb_2O_5$가 생성되었다. Nb와 기판간의 반응에 의하여 유리된 Si는 $600^{\circ}C$이상에서 잔류 Co 및 Nb와 반응하여 실리사이드를 형성하였다. Co/Nb 이중층 구조는 $800^{\circ}C$에서 열처리한 후 면저항이 급증하기 시작하였는데, 이것은 Co층이 기판과 바로 접하게 되어 계면에너지를 줄이기 위해 응집되기 때문이다.

  • PDF

전자기 용접의 충돌 속도에 대한 코일 형상의 영향 (Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding)

  • 박현일;이광석;이진우;이영선;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.