DOI QR코드

DOI QR Code

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio (Politecnico di Torino, Dipartimento Energia ) ;
  • Antonio Buffo (Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia) ;
  • Daniele Marchisio (Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia) ;
  • Laura Savoldi (Politecnico di Torino, Dipartimento Energia )
  • Received : 2022.03.30
  • Accepted : 2022.12.05
  • Published : 2023.03.25

Abstract

The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Keywords

References

  1. J. Feng, I.A. Bolotnov, Evaluation of bubble-induced turbulence using direct numerical simulation, Int. J. Multiphas. Flow 93 (Jul. 2017) 92-107, https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2017.04.003. 
  2. M. Shiea, A. Buffo, E. Baglietto, D. Lucas, M. Vanni, D. Marchisio, Evaluation of hydrodynamic closures for bubbly regime CFD simulations in developing pipe flow, Chemical Engineering \& Technology 42 (8) (2019) 1618-1626, https://doi.org/10.1002/ceat.201900116. 
  3. Y. Liao, R. Rzehak, D. Lucas, E. Krepper, Baseline closure model for dispersed bubbly flow: bubble coalescence and breakup, Chemical Engineering Science 122 (Jan. 2015) 336-349, https://doi.org/10.1016/J.CES.2014.09.042. 
  4. Y. Liao, D. Lucas, Poly-disperse simulation of condensing steam-water flow inside a large vertical pipe, International Journal of Thermal Sciences 104 (Jun. 2016) 194-207, https://doi.org/10.1016/J.IJTHERMALSCI.2016.01.016. 
  5. M. Colombo, M. Fairweather, Multi-fluid computational fluid dynamic predictions of turbulent bubbly flows using an elliptic-blending Reynolds stress turbulence closure, Frontiers in Energy Research 8 (2020) 44, https://doi.org/10.3389/fenrg.2020.00044. 
  6. M. Colombo, R. Rzehak, M. Fairweather, Y. Liao, D. Lucas, Benchmarking of computational fluid dynamic models for bubbly flows, Nuclear Engineering and Design 375 (2021), 111075, https://doi.org/10.1016/j.nucengdes.2021.111075. 
  7. Software Siemens Digital Industries, Star-CCM+ User's Guide V. 16.02, 2021. 
  8. M. Ishii, Thermo-fluid Dynamic Theory of Two-phase Flow, 1975 [Online], https://inis.iaea.org/search/search.aspx?orig_q=RN:7233706. (Accessed 1 December 2021). 
  9. D. Ramkrishna, The framework of population balance, Population Balances (Jan. 2000) 7-45, https://doi.org/10.1016/B978-012576970-9/50003-5. 
  10. A. Tomiyama, I. Kataoka, I. Zun, T. Sakaguchi, Drag coefficients of single bubbles under normal and micro gravity conditions, Jsme International Journal Series B-fluids and Thermal Engineering 41 (1998) 472-479.  https://doi.org/10.1299/jsmeb.41.472
  11. A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows, Chemical Engineering Science 57 (11) (Jun. 2002) 1849-1858, https://doi.org/10.1016/S0009-2509(02)00085-4. 
  12. R.M. Sugrue, A Robust Momentum Closure Approach for Multiphase Computational Fluid Dynamics Applications, PhD thesis, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, 2017. 
  13. R.M. Wellek, A.K. Agrawal, A.H.P. Skelland, Shape of liquid drops moving in liquid media, Aiche Journal 12 (1966) 854-862.  https://doi.org/10.1002/aic.690120506
  14. D. Shaver, M. Podowski, Modeling of interfacial forces for bubbly flows in subcooled boiling conditions, Transactions of the American Nuclear Society 113 (2015) 1368-1371. 
  15. A.D. Burns, Th Frank, I.S. Hamill, J. Shi, The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-phase Flows, 5th International Conference on Multiphase Flow, Yokohama, 2004. 
  16. S.P. Antal, R.T. Lahey, J.E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, International Journal of Multiphase Flow 17 (5) (Sep. 1991) 635-652, https://doi.org/10.1016/0301-9322(91)90029-3. 
  17. R. Rzehak, E. Krepper, CFD modeling of bubble-induced turbulence, International Journal of Multiphase Flow 55 (Oct. 2013) 138-155, https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2013.04.007. 
  18. S. Lo, D. Zhang, Modelling of break-up and coalescence in bubbly two-phase flows, The Journal of Computational Multiphase Flows 1 (1) (Jan. 2009) 23-38, https://doi.org/10.1260/175748209787387106. 
  19. D.P. Hill, The Computer Simulation of Dispersed Two-phase Flow, PhD thesis, Department of Mechanics, Imperial College of Science, Technology and Medicine, London, 1998. 
  20. C. Tsouris, L.L. Tavlarides, Breakage and coalescence models for drops in turbulent dispersions, Aiche Journal 40 (1994) 395-406.  https://doi.org/10.1002/aic.690400303
  21. C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chemical engineering science 32 (11) (1977) 1289-1297.  https://doi.org/10.1016/0009-2509(77)85023-9
  22. W. Yao, C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow, International journal of heat and mass transfer 47 (2) (2004) 307-328.  https://doi.org/10.1016/j.ijheatmasstransfer.2003.06.004
  23. V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J., 1962. 
  24. L.I. Zaichik, O. Simonin, V.M. Alipchenkov, Turbulent collision rates of arbitrary-density particles, International journal of heat and mass transfer 53 (9) (2010) 1613-1620.  https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.035
  25. H. Luo, Coalescence, Breakup and Liquid Circulation in Bubble Column Reactors, Ph.D. Thesis, Norges Tekniske Hoegskole, Trondheim, 1993. 
  26. A. Tomiyama, Progress in computational bubble dynamics, in: 7th Workshop on Multiphase Flow, vol. 27, May, 2009. 
  27. W.P. Jones, B.E. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer 15 (2) (Feb. 1972) 301-314, https://doi.org/10.1016/0017-9310(72)90076-2. 
  28. S. Lardeau, R. Manceau, Computations of complex flow configurations using a modified elliptic-blending Reynolds-Stress model, in: 10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Marbella, Spain, 2014. 
  29. S. Hosokawa, A. Tomiyama, S. Misaki, T. Hamada, Lateral Migration of Single Bubbles Due to the Presence of Wall, Nov. 2002, https://doi.org/10.1115/FEDSM2002-31148. 
  30. M. Beyer, D. Lucas, J. Kussin, P. Schutz, Air-water Experiments in a Vertical DN200-Pipe, 2008. 
  31. S. Hosokawa, A. Tomiyama, Multi-fluid simulation of turbulent bubbly pipe flows, Chemical Engineering Science 64 (24) (Dec. 2009) 5308-5318, https://doi.org/10.1016/J.CES.2009.09.017. 
  32. T.J. Liu, S.G. Bankoff, Structure of air-water bubbly flow in a vertical pip-dII. Void fraction, bubble velocity and bubble size distribution, International Journal of Heat and Mass Transfer 36 (4) (Mar. 1993) 1061-1072, https://doi.org/10.1016/S0017-9310(05)80290-X. 
  33. T.J. Liu, The role of bubble size on liquid phase turbulent structure in two-phase bubbly flow, in: Proc. Third International Congress on Multiphase Flow ICMF, vol. 98, 1998, pp. 8-12. 
  34. S.v. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer 15 (10) (Oct. 1972) 1787-1806, https://doi.org/10.1016/0017-9310(72)90054-3.