• Title/Summary/Keyword: Interfacial Bonding Strength

Search Result 174, Processing Time 0.026 seconds

Effect of Surface Treatments of Titanium on Bond Strength and Interfacial Characterization in Titanium-Ceramic Prosthesis (티타늄의 표면처리방법에 따른 티타늄-세라믹 보철시편의 결합강도와 계면특성)

  • Chung, In-Sung;Kim, Chi-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.219-225
    • /
    • 2010
  • The bonding strength between titanium and ceramic were analyzed according to the bonding agent and the coating methods of Au and TiN respectively. The bonding strength was measured through the 3 point bending test. Consequently, the bonding strength of the special bonding agent after the TiN coated (SPTB) group was $72.20({\pm}5.25)MPa$ which was the strongest one among groups. The bonding strength of the special bonding agent treated only (SPB) group was $67.66({\pm}12.10)MPa$, the special bonding agent after the Au coating SPGB group was $46.95({\pm}12.48)MPa$ and the SP group was $43.80({\pm}5.12)MPa$. Taking these results into account, the bonding strength of the SPB group shows the same as it of the SPTB group, however, it is stronger than SP group. And the TiN coated SPTB group shows the stronger bonding strength than the Au coated SPGB group.

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate (Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향)

  • Min, Kyoung-Jin;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process (저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석)

  • Kim, Jaeick;Lee, Seungtae;Lee, Changhee
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Interfacial bonding Energy between Laser Surface Treated HA layer and Ti alloy (레이저 표면처리에 의한 수산화아파타이트 코팅된 타이타니움합금 경계면의 결합에너지)

  • Moon, D.S.;Kim, Y.K.;Nam, S.Y.;Cho, H.S.;Huh, E.J.;Kim, S.Y.;Lee, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.35-38
    • /
    • 1997
  • The interfacial bonding energy between laser surface treated HA layer and Ti alloy substrate was investigated using a mechanical push-out tester. The initial slope of shear-stress and reduced displacement curves, maximum interfacial bond strength and bonding energy were calculated from results of the push-out test. The calculated initial slpoes are 38 MPa for the Ti alloy(A), 65 MPa for the sandblast finished specimen(B), 95 MPa for the HA plasma spray coated specimen and 49 MPa for the laser surface treated specimen(D). The maximum interfacial bonding strength are 3 MPa for the A, 19 MPa for the B, 20 MPa for the C, 10 MPa for the D. The interfacial bonding energies are $3.3\times10^{-9}J/mm^2$ for the A, $15.5\times10^{-9}J/mm^2$ for the B, $15.6\times10^{-9}J/mm^2$ for the C and $18.3\times10^{-9}J/mm^2$ for the D. Microscopic observation shows that the breaking of the laser treated specimen had been occured through the boundary between HA layer and polymer resin, but the untreated specimen had been occured through the inside of HA coating layer.

  • PDF

The Effect of Processing Variables on Self-Bonding Strength in Amorphous PEEK Films (비정질 PEEK 필름의 Self-Bonding강도에 미치는 제조공정변수의 영향)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 1995
  • Self-bonding strength developed at the interface of amorphous PEEK films is highly sensitive to the processing variables(time, temperature, and pressure) during the bonding process. In order to examine the effects of these processing variables, amorphous PEEK films were bonded at various bonding conditions and the resultant interfacial bond strengths were measured using a modified single lap-shear test. Experimental results showed that the developed self-bonding strength increases with increase in bonding temperature and is directly proportional to the bonding time raised to the 1/4 power. The applied pressure seems only to produce better wetting at the beginning stage of the bonding process. Conclusively, the self-bonding of amorphous PEEK films provides a great potential for developing excellent bond strength approaching the strength of the parent material without any adhesives in structural applications.

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF REPAIRED POSTERIOR COMPOSITE RESINS (구치부용(臼齒部用) Composite resin의 부분재수복시(部分再修復時)의 접착강도(接着强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chung, Inn-Gyo;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.131-137
    • /
    • 1988
  • The purpose of this study was to investigate the interfacial bond strength of repaired composite resins, Lite-Fil P and Bis-Fil II, under different interfacial conditions. The matured composite resin specimen were prepared as Table I and divided into 9 groups. All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing. The results were as follows; 1. The bond strength of the groups that bonding agent was applicated was greater than that of the groups that bonding agent was not applicated. 2. The bond strength of the saliva contaminated groups was the lowest. 3. The bond strength of the group that chemical cured composite resin bonded to chemical cured composite resin was greater than that of the other groups. 4. The bond strength of the no-treated group was greater than that of saliva contaminated group, and lesser than that of the bonding agent applicated groups.

  • PDF

Cold Roll Bonding of (Ag-10% Ni)/Cu Clad Metals ((Ag-10 % Ni)/Cu 접점재의 냉간압연접합)

  • 김종헌;김성일;박상용
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.136-144
    • /
    • 1997
  • (Ag-10%Ni)/Cu clad metals for electric contact switch were fabricated by cold-roll bonding process. 2 or 3 passes of cold-rolling was carried out for each process to investigate the effect of the rolling passes on the bonding property. The effect of the annealing temperature of copper before the cold-roll bonding on the bond strength was also studied. The specimen bonded with copper annealed below 30$0^{\circ}C$ before roll bonding showed good bond strength. This is because high stored energy in copper promoted the short range diffusion and the grain refinement of copper by the static recrystallization increased the degree of the interfacial coherency. The maximum peel strength of clad metals bonded with Cu annealed below 30$0^{\circ}C$ was 120N.

  • PDF

Comparison of the shear bond strength of self-etching dentin bonding agents to dentin (자가부식형 상아질 접착제와 상아질과의 전단결합강도 비교)

  • Noh, Su-Jeong;Kim, Bu-Sub;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2007
  • The purpose of this study was to ascertain the bonding durability of self-etching dentin bonding agents to dentin by means of shear bonding strength. Several acid-etching dentin bonding system (ESPE Z100) and self-etching dentin bonding systems (DEN-FIL, GRADIA DIRET) were used. The occlusion surface of human molars were ground flat to expose dentin and treated with the etch bonding system according to manufactures instruction and followed by composite resin application. After 24hours of storage at 37$^{\circ}C$, the shear bonding strength of the specimens was measured in a universal testing machine with a 1mm/min crosshead speed. An one-way analysis of variance and the scheffe test were performed to identify significant differences (p<0.05). The bonded interfacial surfaces and treated dentin surfaces were examined using a SEM. Through the analysis of shear bond strength data and micro-structures of dentin-resin interfaces, following results are obtained. In dentin group, the shear bond strength of DEN-FIL showed statistical superiority in comparison to the other groups and followed by ESPE Z100 and GRADIA DIRECT (p<0.05).

  • PDF

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.