• 제목/요약/키워드: Interface material

검색결과 2,113건 처리시간 0.027초

용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구 (A Computational Study on Creep-Fatigue behavior of Weld Interface Crack)

  • 이진상;윤기봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

직접압출에 의한 Cu-Al 층상 복합재료 봉의 계면접합 (Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion)

  • 김희남;윤여권;강원영;박성훈;이승평
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2000
  • Composite material consists of more than two materials and make various kinds of composite materials by combining different single materials. Copper clad aluminum composite material is composed of Al and Cu, and it has already been put to practical use in Europe because of its economic benefits. This paper presents the interface bonding according to the variation of extrusion ratio and semi-angle die by observing the interface between Cu and Al using metal microscope. By that result, we can predict the conditions of the interface bonding according to the extruding conditions.

  • PDF

면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구 (Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear)

  • 신정우;이영신;김성찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF

An interface element for modelling the onset and growth of mixed-mode cracking in aluminium and fibre metal laminates

  • Hashagen, Frank;de Borst, Rene
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.817-837
    • /
    • 1997
  • In the present contribution an interface crack model is introduced which is capable of modelling crack initialisation and growth in aluminium as well as in Fibre Metal Laminates. Interface elements are inserted in a finite element mesh with a yield function which bounds all states of stress in the interface. Hardening occurs after a state of stress exceeds the yield stress of the material. The hardening branch is bounded by the ultimate stress of the material. Thereafter, the state of stress is reduced to zero while the inelastic deformations grow. The energy dissipated by the inelastic deformations in this process equals the fracture energy of the material. The model is applied to calculate the onset and growth of cracking in centre cracked plates made of aluminium and GLARE$^{(R)}$. The impact of the model parameters on the performance of the crack model is studied by comparisons of the numerical results with experimental data.

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

XLPE/EPOM 계면의 전기적 특성 (Electrical Characteristics on the Interface between XLPE/EPDM)

  • 한성구;조정형;이창종;김종석;서광석;박대희;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.235-238
    • /
    • 1996
  • In this paper, We intended to evaluate the characteristics of XLPE/EPDM interface which exists in the cable joint. The fault was mainly occurred in this interface. Thus we looked into the electrical characteristics through the conduction current and the breakdown test. Through from the experiment, we obtained the result that the conduction current in this interface flowed less than other dielectric materials, that the breakdown strength was higher and that the pressure dependance ㅐf the breakdown strength was higher.

  • PDF

Toughened Epoxy/Rubber계면의 교류 절연파괴 현상에 관한 연구 (Study on the AC Interfacial Breakdown Prosperities in the Interface between Toughened Epoxy and Rubber)

  • 김태형;배덕권;이동규;정일형;김충혁;이홍표;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.771-774
    • /
    • 2000
  • Recently, complex insulation method is used in insulation system for underground power delivery devices. Considering the interfaces which affect stability of insulation system, By modeling interface between Epoxy and Rubber, AC interfacial breakdown properties with variation of many conditions to influence on electrical properties were investigated. In this paper, toughened Epoxy and Silicone rubber were used for materials to make interface .

  • PDF

등방성과 X방향 선형함수구배 재료의 접합계면을 따라 전파하는 모드 III 균열의 특성 (Characteristics for a Mode III Crack Propagating along Interface between Isotropic and Functionally Gradient Material with Linear Property Gradation along X Direction)

  • 이광호
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1500-1508
    • /
    • 2004
  • Stress and displacement fields for a crack propagating along interface between isotropic material and functionally gradient one with linear property gradation along X direction are developed. The stress and displacement fields are obtained from the complex function of steady plane motion for isotropic and functionally gradient material (FGM). The stresses and displacement in isotropic material of bimaterial are not influenced by nonhomogeneity, however, the fields in FCM are influenced by nonhomogeneity in the terms of higher order, n$\geq$3. When the nonhomogeneous parameter in FGM is zero, or in area close to crack tip, the fields are identical to those of isotropic-isotropic bimaterial. Using these stress components, the effects of nonhomogeneity on stresses are discussed.

코팅 경사기능 재료의 균열전파에 관한 평가 (The Evaluation of Crack Propagation in Functionally Graded Materials with Coatings)

  • 권오헌
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.25-29
    • /
    • 2008
  • Recently, new functionally graded material(FGM) that has a spatial variation in composition and properties is developed because of its good quality. This material yields the demands for resistance to corrosion and high temperature in turbine blade, wear resistance as in gears and high strength machine parts. Especially coating treatment in FGM surface brings forth a mechanical weak at the interface due to discontinuous stress resulting from a steep material change. It often, leads cracks or spallation in a coating area around an interface. The behavior of propagation cracks in FGMs was here investigated. The interface stresses were reduced because of graded material properties. Also graded material parameter with exponential equation was founded to influence the stress intensity factor. And the resistance curve with FGM coating was slightly increased.

가교폴리에틸렌 계면에서의 트리성장 분석 (An Analysis of Tree Growth in the XLPE Interface)

  • 김철운;박현빈;김태성;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제11권2호
    • /
    • pp.90-94
    • /
    • 1998
  • This study aims at analyzing to treeing in the solid-solid interface which is insulation type of cable junction parts, the proceeding of tree-growth and electrical breakdown were research in the study. Interface was made artificially to detect how it influenced the insulating ability of the whole system, the specimen were XLPE generally used in cable. The interface conditions were divided into two parts. First condition being the one focused on the surface of interface, it was treated with sand paper (#80, #600, #1200). For the second condition, the pressure of interface was varied as the value of 1, 5, 10 [$kg/cm^2$]. Using above conditions, treeing and breakdown properties on tree-growth were respectively compared in details. As a result, breakdown time was shorter for the full range of supplied voltage in the case of interface existed in the joint than non-existed interface. In the case of existed interface, the interface which had high-interface pressure and painted with silicon insulating oil was the best in the aspect of breakdown characteristics.

  • PDF