• Title/Summary/Keyword: Interface Verification

Search Result 370, Processing Time 0.025 seconds

An Experimental Evaluation on Human Error Hazards of Task using Digital Device (디지털 기기 기반 직무 수행 시 인적오류위험성에 대한 실험적 평가)

  • Oh, Yeon Ju;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The application of advanced Main Control Room(MCR) is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. The characteristics of these digital technologies and devices give many opportunities to the interface management, and can be integrated into a compact single workstation in advanced MCR so that workers can operate the plant with minimum physical burden under any operation conditions. However, these devices may introduce new types of human errors and thus a means to evaluate and prevent such errors is needed, especially those related to characteristics of digital devices. This paper reviewed the new type of human error hazards of tasks based on digital devices and surveyed researches on physiological assessment related to human error. An experiment was performed to verify human error hazards by physiological responses such as EEG which was measured to evaluate the cognitive workload of operators. And also, the performances of four tasks which are representative in human error hazard tasks based on digital devices were compared. Response time, ${\beta}$ power spectrum rate of each task by EEG, and mental workload by NASA-TLX were evaluated. In the results of the experiment, the rate of the ${\beta}$ power was increased in the task 1 and task 4 which are searching and navigating task and memory task of hierarchical information, respectively. In case of the mental workload, in most of evaluation items, task 1 and 4 were highly rated comparatively. In this paper, human error hazards might be identified by highly cognitive workload. Conclusively, it was concluded that the predictive method which is utilized in this paper and an experimental verification can be used to ensure the safety when applying the digital devices in Nuclear Power Plants (NPPs).

A Study on the Reliability Verification of Real-time Railway Safety Integrated Monitoring and Control System (실시간 철도안전 통합 감시제어시스템 신뢰성 검증에 관한 연구)

  • Son, Sang-Hyun;Kim, Sang-Ahm;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.83-89
    • /
    • 2021
  • With the recent development of information and communication technology, there have been many attempts to apply various IT technologies in the railway field. Until now, the safety control system has been installed at the site and operated using actual data, but there is a problem that it is difficult to verify the function of the railway safety control system in that no accidents occur in real situations. In this study, accident data is generated randomly to verify that the safety control system is functioning properly, and to this end, simulation data is prepared according to the simulator, accident scenario and scenario. Real-time railway safety monitoring system collects and transmits data from interface devices to common protocol called DDS.

An Exploratory Study on Block chain based IoT Edge Devices for Plant Operations & Maintenance(O&M) (플랜트 O&M을 위한 블록체인 기반 IoT Edge 장치의 적용에 관한 탐색적 연구)

  • Ryu, Yangsun;Park, Changwoo;Lim, Yongtaek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Receiving great attention of IoT and 4th industrial revolution, the necessity comes to the fore of the plant system which aims making it smart and effective. Smart Factory is the key realm of IoT to apply with the concept to optimize the entire process and it presents a new and flexible production paradigm based on the collected data from numerous sensors installed in a plant. Especially, the wireless sensor network technology is receiving attention as the key technology of Smart Factory, researches to interface those technology is actively in progress. In addition, IoT devices for plant industry security and high reliable network protocols are under development to cope with high-risk plant facilities. In the meanwhile, Blockchain can support high security and reliability because of the hash and hash algorithm in its core structure and transaction as well as the shared ledger among all nodes and immutability of data. With the reason, this research presents Blockchain as a method to preserve security and reliability of the wireless communication technology. In regard to that, it establishes some of key concepts of the possibility on the blockchain based IoT Edge devices for Plant O&M (Operations and Maintenance), and fulfills performance verification with test devices to present key indicator data such as transaction elapsed time and CPU consumption rate.

CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy (미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법)

  • Hwang, Chul-Hyun;Shin, Kwang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • Recently, due to the proliferation of IoT sensors, the development of big data and artificial intelligence, time series prediction research on fine dust pollution is actively conducted. However, because the data representing fine dust contamination changes rapidly, traditional time series prediction methods do not provide a level of accuracy that can be used in the field. In this paper, we propose a method that reflects the classification results of environmental conditions through CNN when predicting micro dust contamination using LSTM. Although LSTM and CNN are independent, they are integrated into one network through the interface, so this method is easier to understand than the application LSTM. In the verification experiments of the proposed method using Beijing PM2.5 data, the prediction accuracy and predictive power for the timing of change were consistently improved in various experimental cases.

Verification of the Experimental Correlation for Dynamic Contact Angle by Visualizing Interfaces of Water-Glycerol Mixture Slug in a Hydrophobic Microtube via Synchrotron X-ray Imaging (방사광 X-선 영상법을 이용한 소수성 마이크로 관 내 물-글리세롤 혼합물 슬러그 계면 가시화를 통한 동적접촉각 상관식 검증)

  • Jang, Jin Gyu;Kim, Young Hyun;Kim, Kyoung Joon;Lee, Junghoon;Lee, Yeon Won;Yu, Dong In
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.145-150
    • /
    • 2022
  • Dynamic contact angles have investigated by numerous researchers for understanding interfacial behavior at moving contact lines However, due to limitation of visualization techniques, previous experiments for dynamic contact angles have conducted limitedly in hydrophilic capillary tubes based on visible ray. Recently, there is continuous need for research on dynamic contact angles in hydrophobic capillary tubes on various research and industrial fields. Therefore, in this study, we measure the dynamic contact angles of water-glycerol mixture slug in hydrophobic microtubes using synchrotron X-ray imaging. Based on the visualized data, we verified the previous experimental correlations for dynamic contact angles.

Proposal of Collaborative Sharing Services and Applications for the Treatment of Children with Developmental Disabilities (발달장애 아동의 치료를 위한 협업 공유 서비스 및 애플리케이션 제안)

  • Han, Ji-won;Kang, Jeannie
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.22-38
    • /
    • 2022
  • Recently, due to the temporary closure and isolation of facilities for developmental disabilities due to the prolonged COVID-19, the pain suffered by consumers is getting worse, and there is no clear solution due to the lack of information on inpatient services. Therefore, there is a need for a service system that can prevent institutional and psychological problems for consumers. The purpose of this study is to provide systematic inpatient treatment guides, post-discharge management, and correct education for children with developmental disabilities and their guardians. After deriving the needs and improvement factors of consumers through domestic service case analysis, we conducted co-creation with end-users using the double diamond methodology. A possible service concept was derived. Accordingly, a collaborative sharing app service was proposed, and the usefulness of the service was confirmed through the usability evaluation and verification of various stakeholders. It is expected that the results of this study will be utilized in the development of an assistance system for the developmental disability ward based on user experience.

The Digital Redundancy Design for Back-up Mode Operation of Aviation Intercom (항공용 인터콤의 백업 모드 운용을 위한 디지털 방식의 이중화 설계)

  • Jeong, Seong-jae;Cho, Kyung-hak;Kim, Dong-hyouk;Lee, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.358-364
    • /
    • 2022
  • The Inter Communication System for avionics is in charge of processing all voice signals that internal calls between Pilot and Co-pilot, internal calls between Pilots and Crews, external calls through communication equipment such as Ultra/Very High Frequency Receiver/Transmitter(U/VHF RT), audio signal monitoring for navigation and mission equipment such as VHF Omnidirectional Range/Instrument Landing System(VOR/ILS), Tactical Air Navigation(TACAN), audio signal output for voice recording to Flight Data Recorder(FDR) and Data Transfer System(DTS), and warning/caution audio signal generate about the status and threat of aircraft. Because Inter Communication System for avionics is sensitive to noise in the case of analog audio signals, a redundant design that can protect audio signal from electromagnetic noise inside/outside of aircraft is required for the mission of pilots and crews. In this paper, Normal/Back-up operation mode and redundancy design plan based on digital method for the redundancy of the digital Inter Communication System for avionics and manufacturing, verification results are described.

Comparison procedure in evaluation analysis of source code comparison on Embedded system (정보기기 소스코드 유사성 분석에서 목적물 검증)

  • Nam, SangYep;Kim, Do-Hyeun;Lee, Kyu-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • In order to analyze the similarity of the source code object material, the source code on both sides must be able to be compiled and executed. In particular, in the case of hardware-integrated software, it is necessary to check whether the hardware interface matches. However, currently, the source code is provided in an incomplete state which is not original of source code used in developing steps. The complainant confirms that the executing characteristics are similar to their own in the expression and function of the output, and request an evaluation. When a source code compilation error occurs during the evaluation process, the experts draw a flowchart of the source code and applies the method of tracing the code flow for each function as indirect method. However, this method is indirect and the subjective judgment is applied, so there is concern about the contention of objectivity in the similarity evaluation result. In this paper, the problems of unverified source code similarity analysis and improvement directions are dealt with, through the analysis cases of source code disputes applied to embedded systems.

Implementation of Joystick for Flight Simulator using WiFi Communication

  • Myeong-Chul Park;Sung-Ho Lee;Cha-Hun Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.111-118
    • /
    • 2023
  • In this paper, we propose a WiFi-based joystick with an acceleration sensor and a vibration sensor that can be used in flight simulators and VR fields. The flight simulator is a technology belonging to the ICT and SW application field and provides a simulation environment that reproduces the aircraft environment. Existing flight simulator control devices are fixed to a specific device and the user's activity area is limited. In this paper, a 3D space manipulation device was implemented for the user's free use of space. In addition, the proposed control device is designed as a WiFi communication board and display that displays information and performs 3-axis sensing for accurate and sophisticated control compared to existing VR equipment controllers. And the applicability was confirmed by implementing a Unity-based virtual environment. As a result of the implementation device verification, it was confirmed that the control device operates normally through the communication interface, It was confirmed that the sensing values in the game and the sensing values measured on the implemented board matched each other. The results of this study can be used for VR and various metaverse related contents in addition to flight simulators.

Development of a Hybrid fNIRS-EEG System for a Portable Sleep Pattern Monitoring Device (휴대용 수면 패턴 모니터링을 위한 복합 fNIRS-EEG 시스템 개발)

  • Gyoung-Hahn Kim;Seong-Woo Woo;Sung Hun Ha;Jinlong Piao;MD Sahin Sarker;Baejeong Park;Chang-Sei Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.392-403
    • /
    • 2023
  • This study presents a new hybrid fNIRS-EEG system to meet the demand for a lightweight and low-cost sleep pattern monitoring device. For multiple-channel configuration, a six-channel electroencephalogram (EEG) and a functional near-infrared spectroscopy (fNIRS) system with eight photodiodes (PD) and four dual-wavelength LEDs are designed. To enhance the convenience of signal measurement, the device is miniaturized into a patch-like form, enabling simultaneous measurement on the forehead. Due to its fully integrated functionality, the developed system is advantageous for performing sleep stage classification with high-temporal and spatial resolution data. This can be realized by utilizing a two-dimensional (2D) brain activation map based on the concentration changes in oxyhemoglobin and deoxyhemoglobin during sleep stage transitions. For the system verification, the phantom model with known optical properties was tested at first, and then the sleep experiment for a human subject was conducted. The experimental results show that the developed system qualifies as a portable hybrid fNIRS-EEG sleep pattern monitoring device.