• Title/Summary/Keyword: Interface Model

Search Result 3,231, Processing Time 0.03 seconds

Construction of Record Retrieval System based on Topic Map (토픽맵 기반의 기록정보 검색시스템 구축에 관한 연구)

  • Kwon, Chang-Ho
    • The Korean Journal of Archival Studies
    • /
    • no.19
    • /
    • pp.57-102
    • /
    • 2009
  • Recently, distribution of record via web and coefficient of utilization are increase. so, Archival information service using website becomes essential part of record center. The main point of archival information service by website is making record information retrieval easy. It has need of matching user's request and representation of record resources correctly to making archival information retrieval easy. Archivist and record manager have used various information representation tools from taxonomy to recent thesaurus, still, the accuracy of information retrieval has not solved. This study constructed record retrieval system based on Topic Map by modeling record resources which focusing on description metadata of the records to improve this problem. The target user of the system is general web users and its range is limited to the president related sources in the National Archives Portal Service. The procedure is as follows; 1) Design an ontology model for archival information service based on topic map which focusing on description metadata of the records. 2) Buildpractical record retrieval system with topic map that received information source list, which extracted from the National Archives Portal Service, by editor. 3) Check and assess features of record retrieval system based on topic map through user interface. Through the practice, relevance navigation to other record sources by semantic inference of description metadata is confirmed. And also, records could be built up as knowledge with result of scattered archival sources.

A Study of Functional Performance on Smartphone according to Age Difference (나이 차이에 따른 스마트폰 기능 수행도 연구)

  • Yoon, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.318-323
    • /
    • 2019
  • In this study, we examined the differences in age among the various functions required for everyday life through smartphone using environment. The subjects were composed of 30 young adults and 30 elderly people. We set up 12 tasks to evaluate the performance of smartphone functions. At the same time, a questionnaire about smartphone usage habits was made. The questionnaire consists of items related to user history and usage habits. ANOVA analysis was performed using Minitab version 14, and statistically significant differences were found in 10 tasks. The result of the actual values for each task showed that the elderly generally took more time to perform all the tasks than the younger ones. Especially, the tendency of the task which requires a lot of keystrokes was revealed. Especially, in the case of a task requiring a lot of keystrokes, the tendency was remarkable. Young adults have found that they use all functions uniformly overall, and the functions used by the elderly were biased toward some functions, such as dialing, text, kakao talk, and searching. These results suggest that young people use smartphones more frequently than elderly people, and as they become accustomed to using smartphones, the time required to perform functions may be shortened. We suggest that it is necessary to design in terms of hardware or software so that the elderly people can input easily and conveniently.

Modularization of Automotive Product Architecture: Evidence from Passenger Car (자동차 아키텍처의 모듈화: 승용차 사례를 중심으로)

  • Kwak, Kiho
    • Journal of Technology Innovation
    • /
    • v.27 no.2
    • /
    • pp.37-71
    • /
    • 2019
  • How has the passenger car's architecture evolved? In the meantime, the discussions on the car architecture have been mixed, i.e., integral, modular, and the coexistence of two types. Therefore, in this study, we aim to develop two indices can measure the degree of modularization of passenger car and its all modules using global trade data. By applying the indices to the framework of architecture positioning that reflects the hierarchical structure of a product, we examined that the degree of modularization of the passenger car architecture has been enhanced. Meanwhile, the degree of modularization differs across the modules that make up the car. Specifically, we observed the higher degree of modularization in front-end, cockpit and seat modules. Whereas, we found that body module had a relatively low degree of modularization. In particular, we observed that the platform of passenger car has notably modularized due to carmakers' efforts to achieve model diversification and reduction of cost and period in new product development at the same time. Interestingly, we showed that three modules, i.e., engine, chassis (relatively less modularized), and transmission (relatively highly modularized), had a different level of modularization, even if they commonly make up the platform. We contribute to the suggestion for analytical approaches that examine the degree of modularization and its progress longitudinally. In addition, we propose the necessity of decomposition of a system into elements in a study of product architecture, considering the possibly distinctive progress of modularization across the elements.

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Recent Trends in Integrative Insect Nutrition: A Nutritional Geometry Perspective (통합곤충영양학에 관한 최신 연구동향: 영양기하학적 관점을 중심으로)

  • Lee, Kwang Pum;Jang, Taehwan;Rho, Myung Suk
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • Nutrition dictates nearly all biological processes and determines Darwinian fitness in all living organisms, including insects. Research on insect nutrition has a long history in the field of insect physiology and the importance of understanding insect nutrition has become increasingly apparent with the growing need for producing insects as food and feed. Nevertheless, it is only in recent years that we have witnessed a major breakthrough in our knowledge of insect nutrition. The multivariate, interactive, and dynamic nature of nutrition has long hampered our complete understanding of insect nutrition. However, the challenge posed by such nutritional complexity has been overcome with the advent of the Nutritional Geometry, which is an integrative and multidimensional framework that enabled us to model complex interactions between multiple nutrients. In this review, we introduce the basic concepts and principles of the Nutritional Geometry and describe how this innovative framework has revolutionized the field of insect nutrition and has placed nutrition in the centre of the interface between physiology, ecology, and evolution. We close this review by discussing potentially fertile research areas that can benefit tremendously from the application of this powerful nutritional paradigm in the future.

Metaverse Augmented Reality Research Trends Using Topic Modeling Methodology (토픽 모델링 기법을 활용한 메타버스 증강현실 연구 동향 분석)

  • An, Jaeyoung;Shim, Soyun;Yun, Haejung
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.123-142
    • /
    • 2022
  • The non-face-to-face environment accelerated by COVID-19 has speeded up the dissemination of digital virtual ecosystems and metaverse. In order for the metaverse to be sustainable, digital twins that are compatible with the real world are key, and critical technology for that is AR (Augmented Reality). In this study, we examined research trends about AR, and will propose the directions for future AR research. We conducted LDA based topic modeling on 11,049 abstracts of published domestic and foreign AR related papers from 2009 to Mar 2022, and then looked into AR that was comprehensive research trends, comparison of domestic and foreign research trends, and research trends before and after the popularity of metaverse concepts. As a result, the topics of AR related research were deduced from 11 topics such as device, network communication, surgery, digital twin, education, serious game, camera/vision, color application, therapy, location accuracy, and interface design. After popularity of metaverse, 6 topics were deduced such as camera/vision, training, digital twin, surgical/surgical, interaction performance, and network communication. We will expect, through this study, to encourage active research on metaverse AR with convergent characteristics in multidisciplinary fields and contribute to giving useful implications to practitioners.

Behavior of Lateral Resistance according to Embed Depth of Pile for the Wind Power Foundation Reinforced with Piles in the Rocky Layer (암반지반에서 말뚝으로 보강된 풍력발전 기초의 말뚝 근입깊이에 따른 수평저항력 거동)

  • Kang, Gichun;Kim, Dongju;Park, Jinuk;Euo, Hyunjun;Park, Hyejeong;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2022
  • This study conducted to obtain the lateral resistance of a wind power foundation reinforced with piles through an model experiment. In particular, the lateral resistance of the foundation was compared with the existing gravity-type wind power foundation by integrating the pile, the wind power generator foundation, and the rocky ground. In addition, changes in the lateral resistance and bending moment of the pile were analyzed by embeded depths of the pile. As a result, it was found that the lateral resistance increased with the depth of embedment of the piles. In particular, the pile's resistance increase ratio was 2.11 times greater in the case where the pile embedded up to the rock layer than the case where the pile was embedded into the riprap. It was found that the location of the maximum bending moment occurred at the interface between the wind turbine foundation and the riprap layer when the pile embeded to the rock layer. Through this, as the lateral resistance of the wind power foundation reinforced with piles is greater than that of the existing gravity-type wind power foundation, it is understood that it can be a more advantageous construction method in terms of safety.

Effects of Nonverbal Communication of Flight Attendants on Customer Engagement and Brand Intimacy (항공사 승무원의 비언어 커뮤니케이션이 고객 인게이지먼트 및 브랜드 친밀감에 미치는 영향)

  • Yuna Choi;Namho Chung
    • Knowledge Management Research
    • /
    • v.24 no.2
    • /
    • pp.185-209
    • /
    • 2023
  • The air travel industry, which had shrunk with COVID-19, is gaining wings again. Accordingly, this study investigated whether non-verbal communication factors experienced through interaction with airline flight attendants for passengers who have traveled abroad within the past year through domestic airlines affect customer engagement and brand intimacy. A total of 285 samples were collected, and SPSS 28 and AMOS 26 programs were used to verify the reliability and validity of the research tool, the suitability of the model, and hypotheses. As a result of the empirical study analysis, it was confirmed that Paralanguage and Proxemics in non-verbal communication of flight attendants had a significant effect on customer engagement. Although it is different from the results of previous studies following changes in perspective after COVID-19, it once again confirmed the importance of airline crew communication in providing face-to-face services at the interface with passengers. In order to induce customer engagement, which is a new customer satisfaction management index. In addition, it was confirmed that customer engagement has a significant effect on brand intimacy. These results support the view that it is necessary to establish new customer management indicators of emotion and relationship marketing in the existing marketing centered on price reduction or securing loyalty. It was confirmed that interactions with flight attendants can contribute to customer engagement, and these results have important implications for those working in the air transportation industry.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.