• Title/Summary/Keyword: Interface Conductance

Search Result 45, Processing Time 0.029 seconds

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung;Yun, Hee Ju;Choi, Seok;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.463-468
    • /
    • 2019
  • The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.

THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (정지위성 해색 촬영기의 열모델링 기술)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Byoung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF

Fabrication and Properties of AIN/SiC Structures using Reactive RF Magnetron Sputtering Method (반응성 RF 마그네트론 스퍼터링 법을 이용한 AIN/SiC 구조의 제작 및 특성)

  • Kim, Yong-Seong;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.977-982
    • /
    • 2005
  • Al/AlN/n-type 6H-SiC (0001) MIS structures were prepared by AlN layers on vicinal 6H-SiC(0001) substrates with reactive RF magnetron sputtering method. The AlN films were annealed at $900^{\circ}C$, $N_2$ atmosphere lot 1 minutes showed the best result. With XRD analysis, AlN(0002) peak was clearly found. The typical dielectric constant value of the AlN film in the MIS capacitors was obtained as 8.4 from photo C-V. Also, the gate leakage current density of the MlS capacitor was $10^{-10}\;A/cm^2$ order within the electric field of 1.8 MV/cm. Finally, the amount of interface trap densities, $D_{it}$, was evaluated as $5.3\times10^{10}\;eV^{-1}cm^{-2}$ at (Ec-0.85) eV.

A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis (Al6061 열간단조시 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF

Hot-Carrier-Induced Degradation in Submicron MOS Transistors (Submicron MOS 트랜지스터의 뜨거운 운반자에 의한 노쇠현상)

  • 최병진;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.780-790
    • /
    • 1988
  • We have studied the hot-carrier-induced degradation caused by the high channel electric field due to the decrease of the gate length of MOSFET used in VLSI. Under DC stress, the condition in which maximum substrate current occures gave the worst degradation. Under AC dynamic stress, other conditions, the pulse shape and the falling rate, gave enormous effects on the degradation phenomena, especially at 77K. Threshold voltage, transconductance, channel conductance and gate current were measured and compared under various stress conditions. The threshold voltage was almost completely recovered by hot-injection stress as a reverse-stress. But, the transconductance was rapidly degraded under hot-hole injection and recovered by sequential hot-electron stress. The Si-SiO2 interface state density was analyzed by a charge pumping technique and the charge pumping current showed the same trend as the threshold voltage shift in degradation process.

  • PDF

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

Ionic Conductivity by A Complex Admittance Method

  • Chy Hyung Kim;Eung Dong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.495-500
    • /
    • 1989
  • The ionic conductivity of polycrystalline, glass, and glass-ceramic silicates was measured using two-terminal AC method with blocking electrode over a frequency range of 100 Hz to 100 KHz in the temperature range of $200^{\circ}C$ to $320^{\circ}C$. Analysing the capacitance (C), susceptance (B), impedance (Z), and conductance (G) under the given conditions, an equivalent circuit containing temperature and frequency dependent component is proposed. Higher capacitance could be observed in the low frequency region and on the improved ionic migration conditions i.e., at higher temperature in a better ionic conductor. Also the electrode polarization built up at the electrode-specimen interface could be sorted out above 10 KHz. However, grain boundary contribution couldn't be extracted from the bulk resistance over the frequency range measured here.

Electrical Conductance and Electrode Reaction of $RbAg_4I_5$ Single Crystals (고체전해질 $RbAg_4I_5$ 단결정의 전기전도성과 전극반응)

  • Jong Hee Park;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 1980
  • The electrical conductivity of solid electrolyte $RbAg_4I_5$ single crystal was studied at various temperatures. The four-probe method was used in measuring the conductance with an ac signal imposed on the specimen. The ionic conductivity was $0.284 ohm^{-1} cm^{-1}\;at\;25^{\circ}C$, and the activation energy for $Ag^+$ ion migration was calulated to be 1.70 kcal/mole. These values agree well with those reported for polycrystalline samples. Reactions at $Ag/RbAg_4I_5$ interface were studied by cyclic voltammetry with a silver reference electrode. It was found that silver ion is reversibly reduced at silver surfaces below zero volt, and iodide was oxidized above +0.67 volt.The anodic current arising from the oxidation of the electrode was small in magnitude initially over a wide range of potential, but, after silver was cathodically deposited on the electrode, reversing the potential sweep to the anodic direction resulted in a sharp peak of anodic current.

  • PDF

Electrical and Material Characteristics of HfO2 Film in HfO2/Hf/Si MOS Structure (HfO2/Hf/Si MOS 구조에서 나타나는 HfO2 박막의 물성 및 전기적 특성)

  • Bae, Kun-Ho;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2009
  • In this paper, Thin films of $HfO_2$/Hf were deposited on p-type wafer by Atomic Layer Deposition (ALD). We studied the electrical and material characteristics of $HfO_2$/Hf/Si MOS capacitor depending on thickness of Hf metal layer. $HfO_2$ films were deposited using TEMAH and $O_3$ at $350^{\circ}C$. Samples were then annealed using furnace heating to $500^{\circ}C$. Round-type MOS capacitors have been fabricated on Si substrates with $2000\;{\AA}$-thick Pt top electrodes. The composition rate of the dielectric material was analyzed using TEM (Transmission Electron Microscopy), XRD (X-ray Diffraction) and XPS (X-ray Photoelectron Spectroscopy). Also the capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) characteristics were measured. We calculated the density of oxide trap charges and interface trap charges in our MOS device. At the interface between $HfO_2$ and Si, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. And finally, the generation of both oxide trap charge and interface trap charge in $HfO_2$ film was reduced effectively by using Hf metal layer.