• Title/Summary/Keyword: Interface Board

Search Result 463, Processing Time 0.029 seconds

Embedded Linux System for IEEE-1394 Realization. (IEEE-1394 구현을 위한 Embedded LINUX System)

  • 서원호;이정훈;임중규;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.700-705
    • /
    • 2001
  • IEEE1394 is a new interface standard for connecting peripheral devices to embedded linux system. A IEEE1394 system consists of a embedded Linux system and a number of peripherals with IEEE1394 interfaces. In this paper, we Embedded Linux System for IEEE-1394 Realization described with IEEE1394 interface. Using hardware used board on MPC860 processor, Linux kernel used kernel 2.2.14 for a stabilization version, Hardware Interface inspected a test and quality improvement On board with IEEE1394 Application.

  • PDF

Design and Implementation of a Microwave Motion Detector with Low Power Consumption

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose a design of microwave motion detector using X-band doppler radar sensor to minimize the power consumption. To minimize the power consumption and implement battery operated system, pulse input with 2 KHz, 4% duty cycle is exerted on the doppler radar sensor. In order to simplify the process of working with ATmega2560 microcontroller unit, Arduino compatible board is designed and implemented. Arduino is open source hardware and many library software is published as open source tools. Smartphone app is also proposed and designed as a real-time user interface of the motion detector. The SQLite database on the Android mobile operating system is used for recording raw data of motion detection for post-processing job, such as fast Fourier transform (FFT). Bluetooth interface module is implemented on the motion detection board as a wireless communication interface to the smartphone. The speed of human movement is identified by post-processing FFT.

Design of redundancy interface between TCMS and ATC system, and brake control of free-axle system (TCMS와 ATC장치간 인터페이스 이중계 구현 및 무축제동 제어방안)

  • Hong Gu-sun;Han Shin;Han Jeong-soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1461-1466
    • /
    • 2004
  • Recently Domestic EMU's on board signal systems are gradually changed form Cab signal(Fix Block) to Distance-to-go. Interfaces with on board signal system, TCMS Redundancy structure is mainly required. This paper suggest Manaul/Automatic Driving based on TCMS-ATC interface and design of backup system which is operated by Stan-by Computer when one of it's Local Interface Unit(LIU) is out of oder. For the purpose of Precision Train Stop, Distance-to-go signal system require accuracy speed. Free-axle structure is required for this system This paper suggest Free-axle braking system that lack of brake-force is compensated by the distributed brake-force using TCMS. And one of braking system has out of order, compensation of brake-force for Free-axle system. Then we prove our design to Complete Car Test

  • PDF

Study on Wireless Control of a Board Robot Using an IMU sensor (IMU센서를 이용한 보드로봇의 무선제어 연구)

  • Ryu, Jaemyung;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • This study presents the remote control of a board robot using an IMU sensor based on Bluetooth communication. The board robot is a kind of riding robot controlled throng wireless communication by a user. The user wears the proposed IMU sensor controller, and changes a direction of the robot by the angles of IMU sensor. Bluetooth is used for wireless communication between the board robot and its user. The IMU sensor in the remote controller is used for recognition of a number of actions, which are measured as analog signals. The user actions have five commands ('1'right '2'neutrality '3'left '4'operation '5'stop), which are transmitted from the user to the board robot through Bluetooth communication. Experimental results show that proposed IMU interface can effectively control the board robot.

Maritime radar display unit based on PC for safe ship navigation

  • Bae, Jin-Ho;Lee, Chong-Hyun;Hwang, Chang-Ku
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • A prototype radar display unit was implemented using inexpensive off-the-shelf components, including a nonlinear estimation algorithm for the target tracking in a clutter environment. Two custom designed boards; an analog signal processing board and a DSP board, can be plugged into an expansion slot of a personal computer (PC) to form a maritime radar display unit. Our system provided all the functionality specified in the International Maritime Organization (IMO) resolution A422(XI). The analog signal processing board was used for A/D conversion as well as rain and sea clutter suppression. The main functions of the DSP board were scan conversion and video overlay operations. A host PC was used to run the tracking algorithm of targets in clutter, using the discrete-time Bayes optimal (nonlinear, and non-Gaussian) estimation method, and the graphic user interface (GUI) software for Automatic Radar Plotting Aid (ARPA). The proposed tracking method recursively found the entire probability density function of the target position and velocity by converting into linear convolution operations.

Implementation of FPGA Verification System with Slave FIFO Interface and FX3 USB 3 Bridge Chip (FX3 USB 3 브릿지 칩과 slave FIFO 인터페이스를 사용하는 FPGA 검증 시스템 구현)

  • Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.259-266
    • /
    • 2021
  • USB bus not only works with convenience but also transmits data fast and becomes a standard peripheral interface between FPGA development board and personal computer. In this paper FPGA verification system with slave FIFO interface for Cypress FX3 USB 3 bridge chip was implemented. The designed slave FIFO interface consists of host interface module based on FIFO structure, master bus controller and command decoder and supports streaming communication interface for FX3 bridge chip and memory-mapped input and output interface for user design circuit. The ZestSC3 board with Cypress FX3 USB 3 bridge chip and Xilinx Artix FPGA(XC7A35T-1C5G3241) was used to implement FPGA verification system. It was verified that the FPGA verification system for user design circuit operated correctly under various clock frequencies using GUI software developed by visual C# and C++ DLL. The designed slave FIFO interface for FPGA verification system has modular structure and can be applicable to the different user designs with memory-mapped I/O interface.

Study On Development of Fast Image Detector System (고속 영상 검지기 시스템 개발에 관한 연구)

  • 임태현;이종민;김용득
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.241-244
    • /
    • 2003
  • Nowadays image processing is very useful for some field of traffic applications. The one reason is we can construct the system in a low price, the other is the improvement of hardware processing power, it can be more fast to processing the data. In this study, I propose the traffic monitoring system that implement on the embedded system environment. The whole system consists of two main part, one is host controller board, the other is image processing board. The part of host controller board take charge of control the total system, interface of external environment. and OSD(On screen display). The part of image processing board takes charge of image input and output using video encoder and decoder, image classification and memory control of using FPGA, control of mouse signal. And finally, fer stable operation of host controller board, uC/OS-II operating system is ported on the board.

  • PDF

Design of Emulator using DSP Chip (DSP 칩을 이용한 에뮬레이터 설계)

  • Lee, Dae-Young;Lee, Jae-Hak;Kim, Jin-Min;Kim, Hyoun-Ho;Bae, Hyeon-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.453-455
    • /
    • 1993
  • In this research, the digital signal processing PC board which employs TI's TMS320C25 is implemented. The board can perform following functions. spectrum analysis of speech and repetitive signal, digital filters emulation by convolution, signal generation of sinusoidal wave, rectangular wave etc.. In this system, communications between PC and DSP board. program down-loading to DSP board and recording and graphic of acquired and processed data in DSP board are executed by PC. Parallel interface and buffer memory are used in communications. Data acquisition and operation are carried out in DSP board. Resultant data are transmitted to PC and output through DAC.

  • PDF

The Implementation of High speed Memory module Interface in the Military Single Board Computer (군용Single Board Computer에서의 고속메모리모듈 I/F구현)

  • Lee, Teuc-Soo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.521-527
    • /
    • 2011
  • POWER PC series are common to the Central Processing Unit for Military Single Board Computer. Among them, G4 group, which contains the 74xx series supported by Freescale manufacturer is mainly used in the Military applications. We focus on the Interface between memory and controller. PCB stacking method, component routing, impedance matching and harsh environment for Military spec are the main constraints for implementation. Also, we developed memory as a module for the consideration of Military environments. The overall type of SBC should be designed by the form of 6U VME or 3U VME. Therefore this study suggests the electrically optimum Interface matching, Artwork technology based on the signal cross over and PCB stacking method on the harsh environment.

A Study on the Implementation of the On-Board Diagnostic Function on the Smart Phone and the Compatibility Test for Short-Range Wireless Communications (스마트폰 연동 차량의 온보드 고장진단 기능 구현과 근거리 무선통신 호환성 시험에 관한 연구)

  • Koo, Je-Gil;Yang, Seong-Ryul;Song, Jong-Wook;Lee, Choong-Hyuk;Yang, Jae-Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.285-292
    • /
    • 2016
  • By adding short-range wireless communication function such as Bluetooth and Wi-Fi to the last vehicle in conjunction with a smart phone, a modern automobile is becoming entertainment screen to determine a variety of information such as car location information, diagnosis information, etc. through the ECU vehicle electronic control unit. In this study, by utilizing short-range communications capability of the on-board diagnostic devices and smart phones in association with the on-board diagnostics, compatibility tests among a number of smart phone models, Bluetooth and NFC(Near Field Communication) were carried out and those results were analyzed. Furthermore, composition of on-board diagnostic device having Bluetooth and NFC interface function and the fault diagnosis function were implemented, and fault diagnosis debugging program was developed. In addition, fault diagnosis data of the vehicle via the OBD-II interface was extracted. Finally, the on-board diagnostics CAN Protocol implementation has been proposed, and the results of work was analyzed.