• 제목/요약/키워드: Interconnected Distribution System

검색결과 125건 처리시간 0.043초

컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석 (Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;오승진;한병문;정병창;정용호;최영도;전영수
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석 (Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;한병문;최영도;전영수;정병창;정용호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

A New Formulation for Coordination of Directional Overcurrent Relays in Interconnected Networks for Better Miscoordination Suppression

  • Yazdaninejadi, Amin;Jannati, Jamil;Farsadi, Murtaza
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.169-175
    • /
    • 2017
  • A safe and reliable protection system in distribution networks, specifically, those hosting distribution generation units, needs a robust over-current protection scheme. To avoid unintentional DG disconnection during fault conditions, a protection system should operate quickly and selectively. Therefore, to achieve this aim, satisfying coordination constraints are important for any protection scheme in distribution networks; these pose a challenging task in interconnected and large-scale networks. In this paper, a new coordination strategy, based on the same non-standard time-current curve for all relays, in order to find optimal coordination of directional over-current relays, is proposed. The main aim is to reduce violations, especially miscoordination between pair relays. Besides this, the overall time of operation of relays during primary and backup operations should be minimized concurrently. This work is being tackled based on genetic algorithms and motivated by the heuristic algorithm. For the numerical analysis, to show the superiority of this coordination strategy, the IEEE 30-bus test system, with a mesh structure and supplemented with distributed generation, is put under extensive simulations, and the obtained results are discussed in depth.

전압변동과 부하량을 고려한 저압배전계통의 분산전원 설치용량 분석 (The Study on Permissible Capacity of Distributed Generation Considering Voltage Variation and Load Capacity at the LV Distribution Power System)

  • 문원식;조성민;신희상;이희태;한운기;추동욱;김재철
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.100-105
    • /
    • 2010
  • This paper describes a capacity of distributed generation which will be interconnected at low voltage distribution systems. In order to set the capacity of distributed generation, a voltage variation of distribution system is considered. Besides, the capacity of distributed generation is classified according to a capacity of pole transformer and loads. The system constructions in this paper are analyzed by using PSCAD/EMTDC. In the immediate future, it is expected to increase the installation of New and renewable energy systems which are generally interconnected to distribution power systems in the form of distributed generations like photovoltaic system, wind power and fuel cell. So the study of this kind would be needed to limit the capacity of distributed generation.

분산전원 연계선로에서 보호계전기의 상전류 오차보정 알고리즘 개발 (The Development of an Algorithm for the Correction of Errors in the Phase Current of the Protective Relay on Distribution System Interconnected with Distributed Generations)

  • 신동열;윤동현;차한주
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1604-1609
    • /
    • 2013
  • When the ground fault on the power side occurs on distribution system interconnected with distributed generations, the abnormal current is generated in the neutral conductor by the connection type and the iron core structure of transformers for the interconnection of distributed power supplies due to the unbalanced voltage of the system, and subsequently the false operation of the protective relay on the load side occurs. Herein, this paper proposes the method to correct errors in the phase current to prevent the false operation of the protective relay by applying p-q theory and presents the simulation result of the error correction algorithm using PSCAD/EMTDC.

Monte-Carlo Simulation을 이용한 연계계통의 최대수송전력 산정 (Maximum Transfer Capability Calculating in Interconnected Power System using Monte-Carlo Sinulation)

  • 남광우;김용하;이범;최상규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.360-362
    • /
    • 2000
  • This paper presents a probabilistic method for describing the transfer capability of one area in an interconnected power system. The approach is based on Monte Carlo simulation scheme. The result of this method is the probability distribution of transfer capability. The distribution yield a general framework for probabilistic analysis of STC. IEEE RTS-24 power system is utilized to evaluate the proposed method.

  • PDF

전기저장장치를 이용한 태양광전원이 연계된 배전계통 수용성향상 방안에 관한 연구 (A Study on the Large-scale Adoption Method of Distribution System Interconnected with PV System by Energy Storage System)

  • 남양현;최성식;강민관;이후동;박지현;노대석
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1031-1039
    • /
    • 2018
  • If large-scale PV systems are continuously interconnected to distribution system, customer voltages could violate the allowable voltage limit($220{\pm}13V$) according to reverse power flow of PV system. In order to solve these problems, this paper proposes flexible adoption evaluation algorithm of PV system in distribution system which estimates proper introduction capacity and location of ESS(energy storage system) for keeping customer voltages within allowable voltage limit based on various operating scenarios related with connecting point and capacity of PV system. And also this paper proposes modeling of ESS, SVR(step voltage regulator) and PV system using PSCAD/EMTDC S/W and analyzes characteristics of customer voltages and the adoption ability of PV system in distribution system. From the simulation results, it is confirmed that proposed algorithm is useful for large-scale adoption of PV system in distribution system to maintain customer voltages within allowable voltage limit.

대용량 태양광전원이 연계된 배전계통의 전압안정화를 위한 소수력발전기의 최적전압제어 알고리즘 (Optimal Voltage Control Algorithm of Small Hydro Generators for Voltage Stabilization in Distribution system with large scaled PV systems)

  • 최홍열;최성식;강민관;노대석
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.824-832
    • /
    • 2018
  • According to the government's policy to demonstrate and expand the renewable energy sources, distributed generators such as PV and WP are installed and operated in distribution systems. However, there are many issues related to power quality problems including over voltage and under voltage of customers. In order to overcome these problems, the electric power company have installed a step voltage regulator (SVR) in primary feeders interconnected with distributed generators, and also have established the technical guidelines for the distributed generators to stabilize the customer voltages in distribution systems. However, it is difficult to maintain the customer voltages within allowable limit. Therefore, this paper reviews the problems of voltage control by SVR in a distribution systems interconnected with a large amount of PV systems, and proposes characteristics of operating range and voltage control limit of the small hydropower generators. Also, with the estimation of the influence to the power system voltages from the voltage control mode of generators, this paper proposes the optimal voltage control algorithm of the small hydropower generators. By programming the proposed algorithm into control simulator of exciter, it is confirmed that the proposed algorithm can contribute the voltage stabilization in distribution systems interconnected with large scaled PV systems.

분산전원이 연계된 배전계통에서 리크로저와 섹셔널라이저의 개선된 보호협조 방안 (The Advanced Recloser and Sectionalizer Coordination and Protection Scheme in Distribution System Interconnected Distributed Resources)

  • 정현준;최준호;남해곤;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.319-321
    • /
    • 2005
  • According to the second plan of the Korean Government about technology development, utilization and population of new renewable energy, the continuous growth of distributed resources are expected. But if those are interconnected with distribution system, there are many problem. In this paper, it is searched the biggest capacity of distributed resources under limit of actuating current o# protection devices and scheme.

  • PDF

배전계통에 분산전원 연계시 보호협조측면에서 적정용량 검토 (A Study of Propriety Capacity about Protection Scheme When Distribution System Interconnected with Distributed Resources)

  • 이연화;최준호;정현준;남해곤;문채주;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.520-522
    • /
    • 2006
  • According to the second scheme of the Korean Government about technology development, utilization and popularization of new renewable energy, the continuous growth of distributed resources are expected. But there is a few paper about recloser and sectionalizer coordination and protection scheme in distribution system interconnected a number of distributed resources. In this paper, it is dealt with that recloser and sectionalizer coordination at the cases concerned with position among protection devices. Adding distributed resource, the problems of each case are investigated through simulation.

  • PDF