• Title/Summary/Keyword: Intercept Missiles

Search Result 27, Processing Time 0.017 seconds

Prediction of Possible Intercept Time by Considering Flight Trajectory of Nodong Missile

  • Lee, Kyounghaing;Oh, Kyunngwon
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • This paper presents research on predicting the possible intercept time for a Nodong missile based on its flight trajectory. North Korea possesses ballistic missiles of various ranges, and nuclear warhead miniaturization tests and ballistic missile launch tests conducted last year and in previous years have made these missiles into a serious security threat for the international community. With North Korea's current miniaturization skills, the range of the nuclear capable Nodong missiles can be adjusted according to their use goals and operating environment by using a variety of adjustment methods such as payload, fuel mass, Isp, loft angle, cut-off, etc., and therefore precise flight trajectory prediction is difficult. In this regards, this research performs model simulations of the flight trajectory of North Korea's domestically developed Nodong missiles and uses these as a basis for predicting the possible intercept times for major ballistic missile defense systems such as PAC-3, THAAD, and SM-3.

A Study on the Development of an Integrated Automatic Allocation Algorithms for Multilayer Defense System Intercept Missiles (다층방어체계 요격 미사일에 대한 체계통합 자동 할당 알고리즘 개발에 관한 연구)

  • Inseob Hong;Kihoon Kwak;Jeongtaek Oh;Donghyouk Shim;Hwajong Jin;Kwangjin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.628-641
    • /
    • 2024
  • This study aims to propose optimal missile interception allocation strategies for constructing a multi-layered missile defense system in situations where a large number of ballistic missiles are launched simultaneously. Specifically, we consider the threat level of ballistic missiles, the importance of defense zones, and the asset value of interception missiles, and develop a damage consumption index based on these factors. Through an algorithm that minimizes the sum of damage consumption indices for intercepting missiles defending upper and lower layers, we allocate them in optimal combinations to achieve maximum effectiveness with minimal cost. Additionally, we propose a decision-making system based on algorithmic integration rather than human decision-making, particularly in complex operational scenarios, to ensure systematic decision-making and maximize efficiency.

An Analysis Study about Relationship between Ballistic Coefficient and Accuracy of Predicted Intercept Point of Super-High Speed Targets (초고속 표적의 탄도계수와 예상요격지점 정확도의 상관관계 분석 연구)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.265-274
    • /
    • 2014
  • A recent air defense missile system(ADMS) is required to have a capability to intercept super-high speed targets such as tactical ballistic missiles(TBMs) by performing engagement control efficiently. The air defense missile system should be ready to engage the TBMs as soon as the ADMS detects TBMs because falling velocity of TBM is very high and remaining time interval to engage TBM is very short. As a result, the ADMS has to predict the trajectories of TBMs accurately with estimated states of dynamics to generate predicted intercept point(PIP). In addition, it is needed to engage TBMs accurately via transmitting the obtained PIP data to the corresponding intercept missiles. In this paper, an analysis about the relationship between ballistic coefficient and PIP accuracy which is depending on geodetic height of the first detection of TBM is included and an issue about effective engagement control for the TBM is considered.

A Study on the Allocation and Engagement Scheduling of Air Defense Missiles by Using Mixed Integer Programming (혼합정수계획법을 이용한 요격미사일의 할당 및 교전 일정계획에 관한 연구)

  • Lee, Dae Ryeock;Yang, Jaehwan
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.109-133
    • /
    • 2015
  • This paper considers the allocation and engagement scheduling of air defense missiles by using MIP (mixed integer programming). Specifically, it focuses on developing a realistic MIP model for a real battle situation where multiple enemy missiles are headed toward valuable defended assets and there exist multiple air defense missiles to counteract the threats. In addition to the conventional objective such as the minimization of surviving target value, the maximization of total intercept altitude is introduced as a new objective. The intercept altitude of incoming missiles is important in order to minimize damages from debris of the intercepted missiles and moreover it can be critical if the enemy warhead contains an atomic or chemical bomb. The concept of so called the time window is used to model the engagement situation and a continuous time is assumed for flying times of the both missiles. Lastly, the model is extended to simulate the situation where the guidance radar, which guides a defense missile to its target, has the maximum guidance capacity. The initial mathematical model developed contains several non-linear constraints and a non-linear objective function. Hence, the linearization of those terms is performed before it is solved by a commercially available software. Then to thoroughly examine the MIP model, the model is empirically evaluated with several test problems. Specifically, the models with different objective functions are compared and several battle scenarios are generated to evaluate performance of the models including the extended one. The results indicate that the new model consistently presents better and more realistic results than the compared models.

A Study on Optimal Operation against Anti-Air Missiles with Consideration of Anti-Surface Missile Kill Probability (대함유도탄 요격 확률을 고려한 함정 대공방어유도탄의 최적 운용 연구)

  • Park, Hyeonwoo;Lee, Hanmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.815-823
    • /
    • 2019
  • A naval surface-to-air missile is an effective countermeasure against increasing threats of anti-ship missiles. Optimal operation is imperative for high survivability due to limited defense resources of a warship. This paper addresses a problem of optimal engagement to maximize the overall probability of intercept under Shoot-Look-Shoot tactics. The problem is formulated and analyzed with consideration of a realistic single-shoot probability model. The analysis shows that a global solution is achieved for some engagement scenarios. A numerical algorithm to optimize the overall probability of intercept is suggested. An illustrative example is provided to verify our results.

A Study of Multi-to-Majority Response on Threat Assessment and Weapon Assignment Algorithm: by Adjusting Ballistic Missiles and Long-Range Artillery Threat (다대다 대응 위협평가 및 무기할당 알고리즘 연구: 탄도미사일 및 장사정포 위협을 중심으로)

  • Im, Jun Sung;Yoo, Byeong Chun;Kim, Ju Hyun;Choi, Bong Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In weapon assignment studies to defend against threats such as ballistic missiles and long range artillery, threat assessment was partially lacking in analysis of various threat attributes, and considering the threat characteristics of warheads, which are difficult to judge in the early flight stages, it is very important to apply more reliable optimal solutions than approximate solution using LP model, Meta heuristics Genetic Algorithm, Tabu search and Particle swarm optimization etc. Our studies suggest Generic Rule based threat evaluation and weapon assignment algorithm in the basis of various attributes of threats. First job of studies analyzes information on Various attributes such as the type of target, Flight trajectory and flight time, range and intercept altitude of the intercept system, etc. Second job of studies propose Rule based threat evaluation and weapon assignment algorithm were applied to obtain a more reliable solution by reflection the importance of the interception system. It analyzes ballistic missiles and long-range artillery was assigned to multiple intercept system by real time threat assessment reflecting various threat information. The results of this study are provided reliable solution for Weapon Assignment problem as well as considered to be applicable to establishing a missile and long range artillery defense system.

A Study on Intercept Probability and Cost based Multi-layer Defense Interceptor Operating Method using Mathematical Model (수리모형을 이용한 요격확률 및 비용 기반의 다층 방어 요격미사일 운용방법 연구)

  • Seo, Minsu;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.49-61
    • /
    • 2020
  • It is important to operate a limited number of interceptors effectively to counter ballistic missile threats. The existing interceptor operating method determines the number of interceptors according to the level of TBM (Theater Ballistic Missile) engagement effectiveness applied to a defended asset. It can cause either excessive interceptor waste compared to the intercept probability or the intercept probability decrease. Thus, interceptor operating method must be decided considering the number of ballistic missiles, intercept probability and cost. This study proposes a mathematical model to improve the existing interceptor operating method. In addition, the efficiency indicator is proposed for trade-off between intercept probability and cost. As a result of the simulations, the mathematical model-based interceptor operating method can achieve better results than the existing interceptor operating method.

A Study on the Mission Effect of a Sea-based BMD system (해상기반 탄도미사일 방어체계의 임무효과에 관한 연구)

  • Lee, Kyoung Haing;Choi, Jeong Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-126
    • /
    • 2016
  • North Korea has continued developing ballistic missiles with various ranges. Even through the recent launch long-range missiles, it can be inferred that North Korea's Missile technology has reached a level where it can even threaten the US. moreover, through the three times nuclear tests, North Korea is known to have succeeded at gaining 10~20KT of explosive power as well as the minimization and lightening of nuclear warhead. Considering the short length of war zone in Korean peninsula and the possibility of nuclear equipment, if be the most severe threat across the whole peninsula. Since the midcourse phase flight takes the longest time, ROK should establish the ability to intercept at this middle phase. From this perspective, this paper describes mission effect of a sea-based BMD system through empirical threat and flight characteristic analysis using MIT model that was not suggested in original research.

A Study on the Air Defense Capability of Aegis Class Ships the Netted Battlefield (전장네트워크 기반 이지스급 함정의 공중방어능력에 관한 연구)

  • 임희동;권용수
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.137-150
    • /
    • 2002
  • This paper describes a comprehensive analysis of the air defense capability of Aegis class ships on the netted battlefield. A principal threat to ships at sea is anti-ship cruise missiles. The missiles flies lower, faster, and with less radar cross section than its predecessors. Therefore, the ship of the 21s1 century must have the future operational capability based NCW to engage this threat and then the survivability of ship can be guaranteed. This operational concept is reflected in Aegis ship and CEC of US navy, In the near future, the korean navy will be possessed a few Aegis class ships. In this view, this paper has analyzed the intercept range of the sea-skimming ASCM to measure the area defense capability of the Aegis ship in PCW and NCW, respectively and presented the air defense capability of the ship on the netted battlefield.

Aiming Point Correction Technique for Ship-launched Anti-air Missiles Considering Ship Weaving Motion (함정거동을 고려한 대공방어용 함정 탑재 요격탄 조준점 보정 기법)

  • Hong, Ju-Hyeon;Park, Sanghyuk;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.94-100
    • /
    • 2014
  • In order to intercept anti-ship missiles, it is important to accurately predict the aiming point. The major factor for degrading the accuracy of the aiming point is the motions of the warships due to waves. Therefore, a stage of correcting the aiming point is required to compensate for such motions of warships. The proposed aiming point correction technique treats the changes in positions and velocity of naval guns by considering changes in the positions and velocities of the anti-ship missiles. In this paper, a ship motion estimation filter was also constructed to predict the motions of warships at the firing time of naval guns. In the simulation part, finally, the distance errors before and after aiming point corrections were compared through 6-DOF simulations.