• 제목/요약/키워드: Intercellular communication

검색결과 75건 처리시간 0.024초

Intercellular transport across pit-connections in the filamentous red alga Griffithsia monilis

  • Kim, Gwang Hoon;Nagasato, Chikako;Kwak, Minseok;Lee, Ji Woong;Hong, Chan Young;Klochkova, Tatyana A.;Motomura, Taizo
    • ALGAE
    • /
    • 제37권1호
    • /
    • pp.75-84
    • /
    • 2022
  • Intercellular nutrient and signal transduction are essential to sustaining multicellular organisms and maximizing the benefits of multicellularity. It has long been believed that red algal intercellular transport of macromolecules is prevented by the protein-rich pit plug within pit-connections, the only physical connection between cells. Fluorescein isothiocyanate-dextran and recombinant green fluorescence protein (rGFP) of various molecular sizes were injected into vegetative cells of Griffithsia monilis using a micromanipulator, and intercellular transport of the fluorescent probes was examined. Pit-connections were found to provide intercellular transport of tracers at rates comparable to plasmodesmata in other organisms. The time necessary for the transport to an adjacent cell was dependent on the molecular size and the direction of the transport. Fluorescent dextran of 3 kDa was transported to adjacent cells in 1-2 h after injection and migrated to all cells of the filament within 24 h, but fluorescent dextran of 10-20 kDa took 24 h to transfer to neighboring cells. The migration occurred faster towards adjacent reproductive cells and to apical cells than basally. Fluorescent tracers above 40 kDa and rGFP was not transported to neighboring cells, but accumulated near the pit plug. Our results suggest that pit-connections are conduit for macromolecules between neighboring cells and that these size-specific conduits allow intercellular communication between the vegetative cells of red algae.

Effects of Setaria italica on Gap Junction-Mediated Intercellular Communication for the Development of Cancer Chemopreventive Agents

  • Son, Jang-Won;Fang, Ming-Zhu;Cho, Myung-Haing;Kim, Kyung-Ho;Kim, Soo-Un;An, Gil-Hwan;Lee, Chong-Soon;Kim, Ki-Nam;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • 제5권2호
    • /
    • pp.88-92
    • /
    • 1999
  • Inhibition of gap junction-mediated intercellular communication (GJIC) has been considered as an important factor in the tumor promotion phase of carcinogenesis. Recovery effects of natural products on gap junctional intercellular communication are measured by scrape-loading and dye transfer method using Lucifer yellow after administration of phorbol-12-myristate-13-acetate (PMA) on WBF344 cells. Among tested natural products, the hexane fraction and subfractions (F-01 and F-04) of Setaria italica were relatively effective for recovery of GJIC. The hexane fraction of Setaria italica $(EC_{25},\;12.14\;{\mu}g/ml)$ and subfractions $(F-01:EC_{50},\;10.74\;{\mu}g/ml;EC_{25},\;1.58\;{\mu}g/ml,\;F-04:EC_{50},\;11.03\;{\mu}g/ml;\;EC_{25},\;3.12\;{\mu}g/ml)$ revealed dose-dependent recovery effects on GJIC. Our data show GJIC activity measurement by Lucifer yellow spread on cells can be an effective tool for the screening of natural products with possible cancer chemopreventive effects.

  • PDF

Determination of Flavonoids from Allium victorialis var. platyphyllum and Their Effect on Gap Junctional Intercellular Communication

  • Hong, Eun-Young;Choi, Soo-Im;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.747-752
    • /
    • 2007
  • This study was carried out to identify and quantify the flavonoids from 6 different plant parts of Allium victorialis var. platyphyllum (AVP), including the flower, leaf, root, stem, flower stalk, and flower seed, using liquid chromatography/ mass spectrometry. Two major flavonoids were structurally identified as quercetin (3,5,7,3'4,'-pentahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone) at contents of 11.8-25.8 and $6.0-64.4\;{\mu}g/mL$, respectively. In particular, the flower and root plant parts contained the highest amounts of quercetin and kaempferol compared to the other parts. We also assessed the recovery effects of each plant-part extract of AVP on gap junctional intercellular communication (GJIC) in WB-F344 cells by the scrape-loading and dye transfer (SL/DT) method. According to the results, GJIC was reduced by approximately 70.2% ($62.3{\pm}12.5$ cells) compared to the control ($209{\pm}9.5$ cells, 100%) when 12-O-tetradecanoylphorbol-13-acetate (TPA) was treated alone in the WB-F344 rat liver epithelial cells. However, the stem extract (0.2 mg/mL) restored GJIC to basal levels (92%, $204{\pm}2.3$ cells, p<0.01) and the flower extract (0.2 mg/mL) stimulated GJIC to 82.5% ($172.6{\pm}8.3$ cells, p<0.05), when applied together with the TPA.

Protective effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocyte

  • Lee, J.C.;Lee, S.M.;Kim, J.H.;Ahn, S.M.;Lee, B.G.;Chang, I.S.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.65-65
    • /
    • 2003
  • The aim of this study was to investigate the effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication (GJIC) in HaCaT keratinocyte. Anti-oxidative activity of resveratrol was measured by a,a-diphenyl-b-picrylhydrazyl (DPPH) assay and dichlorodihydrofluorescein diacetate oxidation assay. GJIC of HaCaT keratinocyte was assessed using the scrape loading/dye transfer technique. Western blots and reverse transcription-polymerase chain reaction were also analyzed for Connexin 43 protein and mRNA expression, respectively. Resveratrol scavenged directly the stable DPPH radical over a concentration range of 4 mg/$\mell$ (78.2 $\pm$ 2.7% of control) to 500 mg/$\mell$ (29.9 $\pm$ 4.2% of control) and prevent to increase the intracellular fluorescence induced by oxidative stress significantly. Ultraviolet A irradiation (UVA) and 12-O-tetradecanoylphorbol-13-acetate markedly reduced GJIC, which was restored by resveratrol. There were no significant differences in the level of Connexin 43 protein and mRNA expression among any of the experimental groups. Our data suggests that resveratrol has the protective effect on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocyte and this protection is likely due to the scavenging of reactive oxygen species.

  • PDF

Antioxidative Activity of Cherry Tomato (Lycopersicon lycopersicum var. cerasiforme) Extracts and Protective Effect for $H_2O_2$-induced Inhibition of Gap Junction Intercellular Communication

  • Kim, Su-Na;Choi, Won-Hee;Ahn, Ji-Yun;Ha, Tae-Youl
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.630-635
    • /
    • 2009
  • This study was performed to analyze various antioxidants, to evaluate the antioxidative activities, and to measure the protective effect for gap junction intercellular communication (GJIC) to assess the functional potency of the cherry tomato. The ascorbic acid, lycopene, and ${\beta}-carotene$ were measured at $503.4{\pm}9.6$, $39.7{\pm}1.5$, and $7.4{\pm}0.3$ mg/100 g d.w., and ${\alpha}-$, ${\beta}+{\gamma}-$, ${\delta}-tocopherol$ contents were measured at $8.3{\pm}0.1$, $1.7{\pm}0.0$, and $0.1{\pm}0.0$ mg/100 g d.w., respectively. Cherry tomato extract using hexane/acetone/EtOH (2:1:1, CTE) exhibited a ABTS radical scavenging activity with an $IC_{50}$ value of $48.83{\pm}0.30\;{\mu}g/mL$. The cherry tomato protected against the inhibition of GJIC induced by $H_2O_2$ in WB-F344 rat liver epithelial cells, and the reduction in phosphorylated Cx43 was most clearly correlated with the concentration of CTE. These results demonstrated that the cherry tomato harbors a wealth of potent antioxidants and might be protect human body against the inhibition of the GJIC by toxic components.

The Expression Patterns of Connexin Isoforms in the Rat Caput Epididymis During Postnatal Development

  • Han, Su-Yong;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • 제55권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Intercellular interactions are important for the proper development and regulation of tissue function. This is especially necessary in the epididymis, a part of male reproductive tract where sperm become mature and acquire their fertilizing capacity. The caput region of the epididymis consists of several types of cells, including principal, basal, and apical cells. Direct intercellular communication is thus required to precisely regulate the functions of the caput epididymis. In this regard, connexin (Cx) is a molecule that forms channels, which allow the direct exchange of small molecules between cells, enabling intercellular communication. In this study, the expression of Cx isoforms in the caput epididymis at different postnatal ages was determined by using quantitative real-time polymerase chain reaction analysis. Nine of 13 Cx isoforms were detected. The transcript levels of Cx30.3, 31, 31.1, 32, and 40 were highest at 45 days of age, while the expression of Cx43 and 45 gradually decreased with age. A substantial fluctuation of Cx26 expression was detected, with significant decreases before and during puberty, followed by a transient increase at adult-hood and rapid decreases at an old age. A significant increase in Cx37 transcript was observed at 25 days of age, followed by gradual decreases at adult and old ages. These results indicate the significant differential expression of various Cx isoforms in the caput epididymis during postnatal development. It further suggests that the functional regulation and developmental maturation of the caput epididymis are highly related to the postnatal age-related differential expression of Cx isoforms.

$H_2O_2$로 유도된 WB-F344 세포의 GJIC 억제에 대한 색상별 파프리카 추출물의 보호 효과 (Protective Effects of Lipophilic Extracts from Different Colored Paprikas on Inhibition of $H_2O_2$-induced Gap Junctional Intercellular Communications)

  • 김지선;김선아
    • 동아시아식생활학회지
    • /
    • 제24권3호
    • /
    • pp.359-367
    • /
    • 2014
  • This study analyzed phytochemicals, including various carotenoids, tocopherol and L-ascorbic acid, in green, yellow and orange paprikas (GP, YP and OP) and measured the preventive effects of lipophilic extracts from different colored paprikas on the blockage of gap junctional intercellular communication (GJIC), which is known as a cellular event associated with tumor promotion. Main carotenoids were lutein and ${\beta}$-carotene in GP, lutein, ${\beta}$-carotene, capsanthin, violaxanthin, ${\beta}$-carotene and capsorubin in YP, and lutein, ${\beta}$-carotene, cryptoxanthin and zeaxanthin in OP. Total carotenoid contents were $65.54{\pm}15.87$ mg/100 g dw in OP, $11.98{\pm}0.69$ mg/100 g dw in YP and $10.30{\pm}1.43$ mg/100 g dw in GP. Tocopherol contents were highest in GP compared with in YP and OP, whereas L-ascorbic acid contents were very high in all paprikas. We determined the non-cytotoxic levels of paprika extracts by MTT assay, which showed less formation of reactive oxygen species (ROS) induced by $500{\mu}M$ $H_2O_2$ for 1h. Finally, we showed that pretreatment of paprika extracts prevented inhibition of GJIC induced by $500{\mu}M$ $H_2O_2$ by the scrape-loading/dye-transfer technique. In conclusion, each colored paprika has unique phytochemicals and showed a protective effect on inhibition of GJIC.

Toxicity and Carcinogenicity of Dichlorodiphenyltrichloroethane (DDT)

  • Harada, Takanori;Takeda, Makio;Kojima, Sayuri;Tomiyama, Naruto
    • Toxicological Research
    • /
    • 제32권1호
    • /
    • pp.21-33
    • /
    • 2016
  • Dichlorodiphenyltrichloroethane (DDT) is still used in certain areas of tropics and subtropics to control malaria and other insect-transmitted diseases. DDT and its metabolites have been extensively studied for their toxicity and carcinogenicity in animals and humans and shown to have an endocrine disrupting potential affecting reproductive system although the effects may vary among animal species in correlation with exposure levels. Epidemiologic studies revealed either positive or negative associations between exposure to DDT and tumor development, but there has been no clear evidence that DDT causes cancer in humans. In experimental animals, tumor induction by DDT has been shown in the liver, lung, and adrenals. The mechanisms of hepatic tumor development by DDT have been studied in rats and mice. DDT is known as a non-genotoxic hepatocarcinogen and has been shown to induce microsomal enzymes through activation of constitutive androstane receptor (CAR) and to inhibit gap junctional intercellular communication (GJIC) in the rodent liver. The results from our previously conducted 4-week and 2-year feeding studies of p,p'-DDT in F344 rats indicate that DDT may induce hepatocellular eosinophilic foci as a result of oxidative DNA damage and leads them to hepatic neoplasia in combination with its mitogenic activity and inhibitory effect on GJIC. Oxidative stress could be a key factor in hepatocarcinogenesis by DDT.