• Title/Summary/Keyword: Intercalated

Search Result 293, Processing Time 0.025 seconds

Anisotropic Superconducting Gap of Alkaline-earth Intercalated Graphites: $CaC_6$ and $SrC_6$ (알칼리토류 금속이 층간삽입된 흑연의 초전도갭 이방성)

  • Kim, Young-Wook;Kremer, Reinhard K.;Kim, Jun-Sung
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • We have investigated the anisotropy of the superconducting properties for $CaC_6$ and $SrC_6$ using upper critical fields ($H_{c2}$) and specific heat ($C_p$). From the upper critical fields of $CaC_6$ at different magnetic field orientations, H//c and H// ab, the anisotropy is found to be ~ 5 at low temperatures, much larger than that of $SrC_6$. These results are in contrast to the stronger anisotropy in the electronic structure for $SrC_6$ than for $CaC_6$ indicating a stronger anisotropy in the superconducting gap in $CaC_6$. The findings are confirmed by the temperature dependence of the superconducting specific heat below $T_c$ for $CaC_6$ and $SrC_6$, suggesting the important role of anisotropic electron-phonon coupling in superconducting intercalated graphites.

AN ELECTRON MICROSCOPIC STUDY OF THE IRRADIATION EFFECTS ON THE RAT PAROTID INTERCALATED DUCT CELLS (방사선조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구)

  • Choi Won Jai;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 1988
  • This study was designed to investigate the effects of irradiation on the salivary ductal cells, especially on the intercalated ductal cells of the rat parotid glands. For this study, 36 Sprague-Dawley strain rats were irradiated on the head and neck region with absorbed dose of 15Gy by Co-60 teletherapy unit, Picker's model 4M60. The conditions irradiated were that field size, SSD, dose rate and depth were 12×5㎝m, 50㎝, 222 Gy/min. and 1㎝. respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12 hours and 1, 3, 7 days after the irradiation and the changes of the irradiated intercalated duct cells of the parotid glands were examined under the light and electron microscope. The results were as follows: 1. Under the light and electron microscope, the nucleus, mitochondria and secretory granules showed severe changes in the early stage after irradiation and the most severe cellular de- generations were observed 2 hours after irradiation, but the repair processes began from 6 hours after irradiation. 2. Under the electron microscope, loss of the nuclear membranes, derrangement of the chromosomes, swelling and destruction of the secretory granules, and widening of the intercellular spaces were observed after irradiation. 3. Under the light microscope, atrophy and irregular proliferation of the ductal cells, cuboidal metaplasia, hyperchromatism, and the construction or obstruction of the lumen were observed after irradiation.

  • PDF

Preparation of Natural Chemicals Intercalated Aminoclay via One-pot Synthesis and its Antimicrobial Property (One-pot 합성을 통해 천연 화합물이 삽입된 아미노클레이 제조 및 항균성 연구)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.495-500
    • /
    • 2017
  • In this study, we synthesized the aminoclay (AC) with magnesium ions and 3-aminopropyl triethoxysilane (APTES). At the same time, propolis intercalated aminoclay (PIAC) and coptis extract intercalated aminoclay (CIAC) were synthesized by intercalating natural chemicals between clay sheets. Clay synthesis and natural chemical intercalation were confirmed through SEM, particle size analyze, FT-IR, TGA and XRD. In particular, the characterization of intercalation of natural chemicals was determined by analyzing the interlayer distance from XRD data. The antimicrobial property of PIAC and CIAC was checked by minimum inhibitory concentration (MIC) test and increased compared with that of the pristine aminoclay (AC).

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Electronic structure of the Au intercalated monolayer graphene on Ni(111)

  • Hwang, H.N.;Jee, H.G.;Han, J.H.;Tai, W.S.;Kim, Y.D.;Hwang, C.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.342-342
    • /
    • 2010
  • We have investigated an Au intercalated monolayer graphene on Ni(111) using angle-resolved photoemission spectroscopy (ARPES), high resolution photoemission spectroscopy (HRPES), and low energy electron diffraction (LEED) at the 3A2 ARUPS beamline in Pohang Accelerator Laboratory. We find the monolayer graphene is well grown on the Ni(111) surface by the adsorption of acetylene. However, the graphene does not show the characteristic $\pi$ band near the Fermi level due to its strong interaction with the underlying substrate. When Au is adsorbed on the surface and then annealed at high temperature, we observe that Au is intercalated underneath the monolayer graphene. The process of the Au intercalation was monitored by HRPES of corresponding Au 4f and C 1s core levels as well as the electronic structure of the $\sigma$, $\pi$ states at $\Gamma$, K points. The $\sigma$, $\pi$ bands of graphene shift towards the Fermi level and the $\pi$ band is clearly observed at K point after the intercalation of full monolayer Au. The full width at half maximum (FWHM) of the C 1s peak narrows to approximately 0.42 eV after intercalation. These results imply that the interaction between the graphene and substrate is considerably weakened after the Au intercalation. We will discuss the graphene is really closer to ideal free standing graphene suggested recently.

  • PDF

Long-term AC Electrical Treeing Behaviors of Epoxy/Layered Silicate Nanocomposites Prepared by a 3-Roll Mill

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.85-88
    • /
    • 2012
  • Studies on the effects of layered silicate content on the AC electrical treeing and breakdown behaviors of epoxy/layered silicate nanocomposites were carried out in needle-plate electrode geometry. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that 1 wt% of the multilayered silicate was fully exfoliated into nano-sized monolayers in the epoxy matrix however, over 3 wt% of the silicate was in an intercalated state. When 1 wt% layered silicates were incorporated, an electrical tree was initiated in 439 min and propagated at a speed of 2.3 ${\mu}m$/min after applying 781.4 kV/mm, representing a decreased in starting initiation time by a factor of 11.0 and increase in propagation speed by a factor 8.2 in comparison with neat epoxy resin. These values were in great decline after the layered silicate content was increased to 3wt% which implies that the exfoliated silicate blocked the tree initiation and propagation processes effectively. However the effect was largely decreased in the intercalated state.

The structure and synthesis of intercalation compound between a layered double hydroxide and an organic compound (유기화합물이 삽입된 층상이중수산화물의 합성과 구조)

  • 우은경;허영덕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.36-41
    • /
    • 1998
  • Intercalation compounds of alkyl sulfonates into layered double hydroxides (LDH) have been directly synthesized. From the X-ray diffraction data and the alkyl sulfonates size, the orientation of the intercalated alkyl sulfonate into the layered double hydroxide was determined. The intercalated alkyl sulfonate is arranged with molecular chain perpendicular to the hydroxide layer with an antiparallel pattern.

  • PDF

A Study of Intercalations-complex of Montmorillonite as Model-System (II) (Model-System으로서의 몬트모릴로나이트의 층간화합물에 관한 연구(II))

  • 조성준;고영신;김인기;오원춘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.259-264
    • /
    • 1993
  • In this research, the organic tenside R11OSO3- with long alkyl-chain was synthesized, and the intercalationscomplexes fo montmorillonite were formed by the substitution of metallic cation in the montmorilonite by the synthesized organic tenside in following two methods, and the behaviors of the tenside R11OSO3- in the interlamellar space of montmorillonite were studied udner various conditions: 1) In order to protonize the sulfate group of R11OSO3-, the H3O-Montomorillonite, which acts as acid, was synthesized. And then, the organic tenside was intercalated in the interlamellar space of this H3O-Montomorillonite. And thus, the intercalations-complex of R11S-H3O-Montomorillonite was formed. The basal spacing obtained was about 33.84$\AA$. 2) The betaine compound R11OSO3- as a neutral molecule was direct intercalated in the interlamellar space of Na-Montmorillonite under water, and the intercalations-complexes of R11S-H2O-Montmorillonite was synthesized. In this case, the based spacing of bout 23.62$\AA$ was obtained.

  • PDF

Synthesis of PMMA/Clay Nanocomposite via Emulsion Polymerization (유화중합을 이용한 PMMA/Clay 나노컴포지트의 제조)

  • Kim, Cheol-Woo;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Poly(methyl methacrylate)/clay nanocomposite particles with particle size of 275${\sim}$292 nm range were successfully prepared using emulsion polymerization. The content of montmorillonite based on the methyl methacrylate monomer was chosen as 30 wt.%. 2,2-azobis(isobuthylamidine hydrochloride) and n-dodecyltrimethylammonium chloride were used as an initiator and a surfactant in cationic emulsion system. Potassium persulfate and sodium lauryl sulfate were used as an initiator and a surfactant in anionic emulsion system. The evidence of intercalated /exfoliated structure of montmorillonite in the nanocomposite prepared in our experiment was confirmed by wide angle x-ray diffraction patterns of $d_{001}$ plane. Thermal behavior of nanocomposite was traced using DSC and TGA. It was found that the nanocomposite particle prepared by cationic emulsion system showed intercalated structured. We also found that the nanocomposite particle obtained from anionic emulsion system resulted in the fully exfoliated structure.

Structural Phases of Potassium Intercalated into Carbon Nanotubes (탄소 나노튜브 내부에 삽입된 칼륨 구조)

  • 변기량;강정원;송기오;최원영;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.249-258
    • /
    • 2004
  • We investigated structural phases of potassium intercalated into carbon nanotubes using a structural optimization process applied to atomistic simulation methods. As the radius of carbon nanotubes increased, structures were found in various phases from an atomistic strand to multishell packs composed of coaxial cylindrical shells and in helical, layed, and crystalline structures. Numbers of helical atom rows composed of coaxial tubes and orthogonal vectors of a circular rolling of a triangular network could explain multishell phases of potassium in carbon nanotubes.