DOI QR코드

DOI QR Code

Structural Phases of Potassium Intercalated into Carbon Nanotubes

탄소 나노튜브 내부에 삽입된 칼륨 구조

  • 변기량 (중앙대학교 전자전기공학부) ;
  • 강정원 (중앙대학교 전자전기공학부) ;
  • 송기오 (중앙대학교 전자전기공학부) ;
  • 최원영 (중앙대학교 전자전기공학부) ;
  • 황호정 (중앙대학교 전자전기공학부)
  • Published : 2004.03.01

Abstract

We investigated structural phases of potassium intercalated into carbon nanotubes using a structural optimization process applied to atomistic simulation methods. As the radius of carbon nanotubes increased, structures were found in various phases from an atomistic strand to multishell packs composed of coaxial cylindrical shells and in helical, layed, and crystalline structures. Numbers of helical atom rows composed of coaxial tubes and orthogonal vectors of a circular rolling of a triangular network could explain multishell phases of potassium in carbon nanotubes.

Keywords

References

  1. Nature v.361 no.6410 Capillarity induced filling in carbon nnotubes P.M.Ajayan;S.Iijima https://doi.org/10.1038/361333a0
  2. Nature v.388 no.6639 Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br R.S.Lee;H.J.Kim;J.E.Fischer;A.Thess;R.E.Smalley https://doi.org/10.1038/40822
  3. 전기전자재료학회논문지 v.14 no.10 유도결합형 플라즈마 화학기상 중착범을 이용한 탄소나노튜브의 성장 및 전계방출 특성 연구 김광식;류호진;장건의
  4. 전기전자재료학회논문지 v.15 no.4 플라즈마 화학 기상 중착법에서 DC bias가 인가된 탄소 나노튜브의 수직성장과 전계방출 특성 정성희;김광식;장건익;류호진
  5. 전기전자재료학회논문지 v.15 no.8 유도결합형 플라즈마 화학기상중착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구 김광식;류호진;장건익
  6. Science v.289 no.5483 Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes R.R.Meyer;J.Sloan;R.E.Dunin-Borkowski;A.I.Kirkland;M.C.Novotny;S.R.Bailey;J.L.Hutchison;M.L.H.Green https://doi.org/10.1126/science.289.5483.1324
  7. Chem. Phys. Lett v.329 no.1-2 Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes J.Sloan;N.C.Novotny;S.R.Bailey;G.Brown;C.Xu;V.C.Williams;S.Friedrichs;E.Flahaut;R.L.Callender;A.P.E.York;K.S.Coleman;M.L.H.Green;R.E.Dunin-Borkowski;J.L.Hutchison https://doi.org/10.1016/S0009-2614(00)00998-2
  8. Inorganica Chimica Acta v.330 no.1 Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review J.Sloan;S.Friedrichs;R.R.Meyer;A.I.Kirkland;J.L.Hutchison;M.L.H.Green https://doi.org/10.1016/S0020-1693(01)00774-5
  9. Angew. Chem. Int. Ed. v.41 no.7 A one-dimensional BaI₂ chain with five-and six-coordination formed within a single-walled carbon nanotube J.Sloan;S.J.Grosvernor;S.Friedrichs;A.I.Kirkland;J.L.Hutchison;M.L.H.Green https://doi.org/10.1002/1521-3773(20020402)41:7<1156::AID-ANIE1156>3.0.CO;2-N
  10. Chem. Phys. Lett. v.316 no.3-4 The size distribution, imaging and obstructing properties of $C_{60}$ and higher fullerenes formed within arc-grown single walled carbon nanotubes J.Sloan;R.E.Dunin-Borkowski;J.L.Hutchison;K.S.Coleman;V.C.Willians;J.B.Claridge;A.P.E.York;C.Xu;S.R.Bailey;G.Brown;S.Friedrichs;M.L.H.Green https://doi.org/10.1016/S0009-2614(99)01250-6
  11. Chem. Commun. Capilarity and silver nanowire formation observed in single walled carbon nanotubes J.Sloan;D.M.Wright;H.G.Woo;S.Bailey;G.Brown;A.P.E.York;K.S.Coleman;J.L.Hutchison;M.L.H.Green
  12. Carbon v.40 no.10 Filling single-wall carbon nanotubes M.Monthioux https://doi.org/10.1016/S0008-6223(02)00102-1
  13. Phys. Rev. Lett. v.85 no.8 First-Principles Study of Li-Intercalated Carbon Nanotube Ropes J.Zhao;A.Buldum;J.Han;J.P.Lu https://doi.org/10.1103/PhysRevLett.85.1706
  14. Phys. Rev. B. v.64 no.8 Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains J.Yang;H.J.Liu;C.T.Chan https://doi.org/10.1103/PhysRevB.64.085420
  15. Phys. Rev. Lett. v.88 no.1 Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties H.Shimoda;B.Gao;X.P.Tang;A.Kleinhammes;L.Fleming;Y.Wu;O.Zhou
  16. Appl. Phys. Lett. v.80 no.15 Controlling doping and carrier injection in carbon nanotube transistors V.Derycke;R.Martel;J.Appenzeller;P.Avouris https://doi.org/10.1103/PhysRevB.64.085420
  17. Chem. Phys. Lett. v.339 no.5-6 Low-frequency raman modes in Cs- and Rb-doped single wall carbon nanotubes N.Bendiab;A.Righi;E.Anglaret;J.L.Sauvaol;L.Duclaux;F.Beguin https://doi.org/10.1016/S0009-2614(01)00351-7
  18. Chem. Phys. Lett. v.285 no.3-4 In-situ TEM and EELS studies of alkali-metal intercalation with single-walled carbon nanotubes S.Suzuki;C.Bower;O.Zhou https://doi.org/10.1063/1.1467702
  19. Appl. Phys. Lett. v.76 no.26 Work function and calence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles S.Suzuki;C.Bower;Y.Watanabe;O.Zhou https://doi.org/10.1016/S0009-2614(01)00351-7
  20. Appl. Phys. Lett. v.78 no.1 Effects of Cs deposition on the field-emission properties of single-walled carbon-nanotube bundles A.Wadhawan;R.E.Stallcup Ⅱ;J.M.Perez https://doi.org/10.1063/1.1338493
  21. Nature v.388 no.6639 Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering A.M.Rao;P.C.Eklund;S.Bandow;A.Thess;R.E.Smalley https://doi.org/10.1063/1.126849
  22. Science of fullerenes carbon nanotubes M.S.Dresselhaus;G.Dresselhaus;P.C.Eklund https://doi.org/10.1063/1.1338493
  23. Appl. Phys. Lett. v.74 no.1 Electronic and transport properties of N-P doped nanotubes K.Esfarjani;A.A.Farajian;Y.Hashi;Y.Kawazoe https://doi.org/10.1038/40827
  24. Thin Solid Films v.435 no.1-2 Encapsulation of cesium inside single-walled carbon nanotubes by plasma-ion irradiation method G.H.Jeong;A.A.Farajian;T.Hirata;R.Hatakeyama;K.Tohji;T.M.Briere;H.Mizuseki;Y.Kawazoe https://doi.org/10.1016/S0040-6090(03)00337-7
  25. J. Chem. Phys. v.111 no.5 Ab Initio study of dopant insertion into carbon nanotubes A.A.Farajian;K.Ohno;K.Esfarjani;Y.Maruyama;Y.Kawazoe https://doi.org/10.1063/1.122957
  26. Phys. Rev. Lett. v.80 no.25 Position of K atoms in doped single-walled carbon nanotube crystals G.Gao;T.Cagin;W.A.Goddard Ⅲ https://doi.org/10.1016/S0040-6090(03)00337-7
  27. Phys. Rev. Lett. v.74 no.15 Ionic cohesion and electron odping of thin carbon tubules with alkali atoms Y.Miyamoto;A.Rubio;X.Blase;M.L.Cohen;S.G.Gouie https://doi.org/10.1063/1.479487
  28. J. Korean Phys. Soc. v.40 no.2 Structures of cylindrical ultrathin copper nanowires H.J.Hwang;J.W.Kang https://doi.org/10.1103/PhysRevLett.80.5556
  29. Mol. Simulat v.28 no.12 An atomistic simulation study of cylindrical ultrathin Cu nanowires J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevLett.74.2993
  30. Phys. Rev. B. v.48 no.18 Electron-phonon interactions and superconductivity in $K_{3}C_{60}$ G.Chen;Y.Guo;N.Karasawa;W.A.Goddard Ⅲ https://doi.org/10.1103/PhysRevB.48.13959
  31. Phys. Rev. Lett. v.58 no.6 Electronic structure of alkali-intercalated graphite studied by soft-x-ray emission spectroscopy A.Mansour;S.E.Shnatterly;J.J.Risko https://doi.org/10.1080/0892702021000011052
  32. Phys. Rev. B. v.64 no.1 Molecular-dynamics study of the interaction between energetic A1 clusters and an A1 surface J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevB.64.014108
  33. Phys. Rev. B. v.66 no.12 Defects in ultrathin copper nanowires: Atomistic simulations J.W.Kang;J.J.Seo;K.R.Ryun;H.J.Hwang https://doi.org/10.1103/PhysRevB.48.13959
  34. Nanotechnology v.13 no.4 Thermal properties of ultra-thin copper nanobridges J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevLett.58.614
  35. J. Phys: Conden. Matter. v.14 no.10 Pentagonal multi-shell Cu nanowires J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevB.64.014108
  36. Comp. Mater. Sci. v.23 no.1-4 Molecular dynamics simulations of energetic aluminum cluster deposition J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevB.66.125405
  37. J. Korean Phys. Sco. v.40 no.5 Molecular dynamics simulation study of the melting of ultra-thin copper nanowires J.W.Kang;H.J.Hwang https://doi.org/10.1088/0957-4484/13/4/313
  38. J. Korean Phys. Soc. v.38 no.6 Molecular dynamics simulation study of the mechanical properties of rectangular Cu nanowires J.W.Kang;H.J.Hwang
  39. Nanostructured Materials and Nanotechnology J.Sloan;M.L.H.Green
  40. Phys. Rev. B. v.67 no.7 Ordered phases of fullerene molecules formed inside carbon nanotubes M.Hodak;L.A.Girifalco https://doi.org/10.1103/PhysRevB.67.075419
  41. Science v.300 no.5618 Packing $C_{6-}$ in boron nitride nanotubes W.Kickelson;S.Aloni;W.Q.Han;J.Cumings;A.Zettl https://doi.org/10.1126/science.1082346
  42. Phys. Rev. Lett. v.80 no.17 Noncrystalline structures of ultrathin unsupported nanowires O.Gulseren;F.Erolessi;E.Tosatti https://doi.org/10.1103/PhysRevLett.80.3775
  43. Surf. Sci. v.456 Electronic properties of ultra-thin aluminum nanowires F.Di Tolla;A. Dal Corse;J.A.Torres;E.Tosatti
  44. Phys. Rev. Lett. v.86 no.10 Novel structures and properties of gold nanowires B.Wang;S.Yin;G.Wang;A.Buldum;J.Zhao https://doi.org/10.1103/PhysRevB.67.075419
  45. Phys. Rev. B. v.58 no.23 Sturcture and stability of finite gold nanowires G.Bialalbegovic https://doi.org/10.1126/science.1082346
  46. Science v.291 no.5502 String tension and stability of magic tip-suspended nanowires E.Tosatti;S.Prestipino;S.Kostlmeier;A. Dal Corso;F.D.Di Tolla https://doi.org/10.1103/PhysRevLett.80.3775
  47. Solid State Commun/ v.115 no.2 Structures and melting in infinite gold nanowires G.Bialalbegovic https://doi.org/10.1016/S0039-6028(00)00282-X
  48. Surf. Sci. v.426 no.3 the puzzling stability of monatomic gold wires J.A.Torres;E.Tosatti;A. Dal Corso;F.Ercolessi;J.J.Kohanoff;F.D.Di Tolla;J.M.Soler
  49. Comput. Master. Sci. v.18 no.3-4 Metallic nanowires: multi-shelled or filled G.Bialalbegovic https://doi.org/10.1103/PhysRevB.58.15412
  50. J. Phys.: Condens. Matter. v.13 no.20 Structures and electronic properties of ultrathin titanium nanowires B.Wang;S.Yin;G.Wang;J.Zhao https://doi.org/10.1126/science.291.5502.288
  51. Phys. Rev. Lett. v.79 no.18 Gold nanobridge stabilized by surface structure Y.Kondo;K.Takayanagi https://doi.org/10.1016/S0038-1098(00)00149-6
  52. Nature v.395 no.6704 Quantized conductance through indiidual rows of suspended gold atoms H.Ohnishi;Y.Kondo;K.Takayanagi https://doi.org/10.1038/27399
  53. Science v.289 no.5479 Synthesis and Characterization of Helical Multi-Shell Gold Nanowires Y.Kondo;K.Takayanagi https://doi.org/10.1016/S0927-0256(00)00113-0
  54. Phys. Rev. Lett. v.85 no.19 Signature of atomic structure in the quantum conductance of gold nanowires V.Rodribues;T.Fuhere;D.Ugarte https://doi.org/10.1088/0953-8984/13/20/102
  55. Phys. Rev. B. v.65 no.12 Evidence of a single-wall platinum nanotube Y.Oshima;H.Koizumi;K.Mouri;H.Jirayama;K.Takayanagi https://doi.org/10.1103/PhysRevB.65.121401
  56. Chem. Phys. Lett. v.357 no.1-2 Structures of hydrogen molecules in single-walled carbon nanotubes Y.Ma;Y.Xia;M.Zhao;M.Ying https://doi.org/10.1038/27399
  57. Nature v.412 no.6848 Formation of ordered ice nanotubes inside carbon nanotubes K.Koga;G.T.Gao;H.Tanaka;X.C.Zeng https://doi.org/10.1126/science.289.5479.606
  58. Phys. Rev. B. v.68 no.19 Structures of ultrathin copper nanowires encapsulated in carbon nanotubes W.Y.Choi;J.W.Kang;H.J.Hwang https://doi.org/10.1103/PhysRevLett.85.4124
  59. Journal of the Korean Physical Society v.43 no.4 Ordered phases of cesium in carbon nanotubes J.W.Kang;H.J.Hwang;K.O.Song;W.Y.Choi;K.R.Byun;O.K.Kwon;W.W.Kim https://doi.org/10.1103/PhysRevB.65.121401
  60. Y. Ma, Y. Xia, M. Zhao, and M. Ying, "Structures of hydrogen molecules In single-walled carbon nanotubes", Chem. Phys. Lett., Vol. 357, No. 1-2, p. 97, 2002. https://doi.org/10.1016/S0009-2614(02)00448-7
  61. K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, "Formation of ordered ice nanotubes inside carbon nanotubes", Nature, Vol. 412, No. 6849, p. 802, 2001. https://doi.org/10.1038/35090532
  62. W. Y. Choi, J. W. Kang, and H. J. Hwang, "Structures of ultrathin copper nanowires encapsulated in carbon nanotubes", Phys. Rev. B, Vol. 68, No. 19, p. 193405, 2003 https://doi.org/10.1103/PhysRevB.68.193405
  63. J. W. Kang, H. J. Hwang, K. O. Song, W. Y. Choi, K. R. Byun, O. K. Kwon, and W. W. Kim, "Ordered phases of cesium in carbon nanotubes", Journal of the Korean Physical Society, Vol. 43, No.4, p, 534, 2003.