• Title/Summary/Keyword: Interaction potential

Search Result 1,487, Processing Time 0.03 seconds

A Study on Characteristics of Spatial Interaction of Media Art in the Age of New Media (뉴 미디어 시대의 매체예술적 공간 상호작용 특성 연구)

  • Lee, Go-Eun;Lee, Chan
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.3
    • /
    • pp.70-80
    • /
    • 2013
  • This study aims to discover characteristics of interaction through media artistic space, a field of media investigation, for understanding interaction which represents the age of new media and a view on development of interaction which plays a bigger role in it. To achieve this, a research infrastructure was prepared by having access to expression components of which media are applied in a context of art history on media art. Further, physical interaction, perceptual interaction, and mediational interaction were derived by presenting interaction discussed in the existing various areas from an integrated perspective. Subsequently, in order to understand the contents of interaction and its activity, cases were analyzed through analytic frames consisting of interaction elements of subordinate concepts which each interaction has. For results derived from the research, interaction characteristics of media serve as a leading role in space as they are actively used as a potential tool. Therefore, although interaction has been variously represented, it forms a relationship focused on participants, and in order to build a closer relationship with the participants and further interaction, it will be possibly developed in a manner of thinking.

Potential Interaction of Plasmodium falciparum Hsp60 and Calpain

  • Yeo, Seon-Ju;Liu, Dong-Xu;Park, Hyun
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.665-673
    • /
    • 2015
  • After invasion of red blood cells, malaria matures within the cell by degrading hemoglobin avidly. For enormous protein breakdown in trophozoite stage, many efficient and ordered proteolysis networks have been postulated and exploited. In this study, a potential interaction of a 60-kDa Plasmodium falciparum (Pf)-heat shock protein (Hsp60) and Pf-calpain, a cysteine protease, was explored. Pf-infected RBC was isolated and the endogenous Pf-Hsp60 and Pf-calpain were determined by western blot analysis and similar antigenicity of GroEL and Pf-Hsp60 was determined with anti-Pf-Hsp60. Potential interaction of Pf-calpain and Pf-Hsp60 was determined by immunoprecipitation and immunofluorescence assay. Mizoribine, a well-known inhibitor of Hsp60, attenuated both Pf-calpain enzyme activity as well as P. falciparum growth. The presented data suggest that the Pf-Hsp60 may function on Pf-calpain in a part of networks during malaria growth.

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo;Gim, Yeongrok;Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1771-1778
    • /
    • 2013
  • For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores: for the Case of Nonlinear Poisson-Boltzmann Electric Field (하전된 멤브레인 미세기공에서의 계면동전기적 유동에 의한 흐름전위: 비선형 Poisson-Boltzmann 전기장을 갖는 경우)

  • Myung-Suk Chun
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The electrokinetic effect can be found in cases of the fluid flowing across the charged membrane micropores. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is taken into the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like pore is obtained via the Green's function. An explicit analytical expression for the flow-induced streaming potential is derived as functions of relevant physicochemical parameters. The influences of the electric double layer, the surface potential of the wall, and the charge condition of the pore wall upon the velocity profile as well as the streaming potential are examined. With increasing of either the electric double layer thickness or the surface potential, the average fluid velocity is entirely reduced, while the streaming potential increases.

Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field

  • Chun, Myung-Suk;Kwak, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.83-90
    • /
    • 2003
  • In cases of the microfluidic channel, the electrokinetic influence on the transport behavior can be found. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is applied in the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like microchannel is obtained via the Green's function. An explicit analytical expression for the induced electrokinetic potential is derived as functions of relevant physicochemical parameters. The effects of the electric double layer, the zeta potential of the solid surface, and the charge condition of the channel wall on the velocity profile as well as the electroviscous behavior are examined. With increases in either electric double layer or zeta potential, the average fluid velocity in the channel of same charge is entirely reduced, whereas the electroviscous effect becomes stronger. We observed an opposite behavior in the channel of opposite charge, where the attractive electrostatic interactions are presented.

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

The Effect of Inorganic Electrolyte on the Electrokinetic Features of Calcium Carbonate Particles in Aqueous Environment (수중 탄산칼슘 입자의 전기적 거동에 미치는 무기염류의 영향)

  • O, Se-Jin;Choi, Eun-Jin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.89-95
    • /
    • 2010
  • The electrokinetic potential of $CaCO_3$, which takes an important part in aquatic system, has been measured and the variation of total energy between $CaCO_3$ particles with the distance of particles was estimated based on DLVO theory. The electrokinetic potential of particles was observed to increase to positive direction as the charge valence of cations which was added to suspension was increased. Also, the total interaction energy between particles was estimated to be more negative as the charge valence of cation was higher and its concentrations was raised. When a mixture of cations with different charge valences was added, the influence of cation with a higher charge valence was more significant on the total interaction energy between particles. When anion was added to the suspension of $CaCO_3$, the total energy estimated by DLVO theory was examined to move to positive direction and the electrokinetic potential of particles became more negative. Likewise cations, the effect of anions on the electrokinetic potential of particles and total interaction energy between them was observed to be proportional to their charge valence and the influence of the mixture of anions with different charge valence became more remarkable as the mixing ratio of the anion with a higher charge valence was increased.

Quantitative Analysis of Protein-RNA Interaction in A Class I tRNA Synthetase by Saturation Mutagenesis

  • Kim, Sung-Hoon
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.363-367
    • /
    • 1995
  • E. coli methionyl-tRNA synthetase is one of the class I tRNA synthetases. The Tryptophane residue at the position 461 located in the C-terminal domain of the enzyme is a key amino acid for the interaction with the anticodon of $tRNA^{Met}$. W461 was replaced with other amino acids to determine the chemical requirement for the interaction with the anticodon of $tRNA^{Met}$. Saturation mutagenesis at the position 461 generated a total of 12 substitution mutants of methionyl-tRNA synthetase. All the mutants showed the same in vivo stability as the wild-type enzyme, suggesting that the amino acid substitutions did not cause severe conformational change of the protein The mutants containing tyrosine, phenylalanine, histidine and cysteine substitutions showed in vivo activity while all the other mutants did not. The comparison of the in vitro aminoacylation activities of these mutants showed that aromatic ring structure, Van der Waals volume and hydrogen bond potential of the amino acid residue at the position 461 are the major determinants for the interaction with the anticodon of $tRNA^{Met}$.

  • PDF