• Title/Summary/Keyword: Interaction Theory

Search Result 1,469, Processing Time 0.028 seconds

Fundamental Study on the Effect of Grousers on the Soil Thrust of Off-road Tracked Vehicles (그라우저 효과를 고려한 야지궤도차량의 지반추력 평가연구)

  • Baek, Sung-Ha;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.33-42
    • /
    • 2018
  • When an off-road tracked vehicle travels, an engine thrust that is transmitted to the continuous track induces a shearing action on the soil-track interface. Consequently, the relative displacement known as slip displacement takes place on the soil-track interface, which develops an associated soil thrust acting as a traction force. For the loose or soft ground conditions, an excessively large slip displacement can be required for the development of the desired soil thrust which will make the tracked vehicle mobile and therefore the outer surface of the continuous track is generally designed to protrude with grousers. This paper fundamentally studied the effect of grousers on the soil thrust of off-road tracked vehicles. Based on the soil-track interaction theory, a new soil thrust assessment method that properly takes into account the effect of grousers was developed. Also, the soil thrust of off-road tracked vehicles equipped with a number of grousers was evaluated using the developed assessment method. The results showed that grousers increased the soil thrust of the continuous track, enhancing the overall tractive performance of off-road tracked vehicles. These effects were more obvious as the height of grouser increased and the spacing of grouser decreased; thus, it is concluded that the grouser which has smaller shape ratio (span of the grouser to a grouser height) significantly enhances off-road tracked vehicle's performance.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.

Effects of familiarity on the construction of psychological distance (친숙감이 심리적 거리에 미치는 영향)

  • Bae, Heekyung;Kim, Kyungmi;Yi, Do-Joon
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.2
    • /
    • pp.109-133
    • /
    • 2014
  • Psychological distance refers to the perceived gap between a stimulus and a person's direct experience and its activation influences the decisions and actions that the person makes towards the stimulus. We investigated whether the level of familiarity affects the construction of psychological distance. Specifically, we hypothesized that a familiar stimulus, relative to an unfamiliar stimulus, is perceived to be psychologically closer to the observer and so its perception might be modulated by the perceived spatial distance. The familiarity of stimuli was manipulated in terms of preexposure frequency and preexposure perceptual fluency. In experiments, participants were first exposed with three nonsense words in a lexical decision task. The nonsense words were presented in nonword trials with different levels of frequency (frequent vs. rare, Experiment 1) or with different levels of visibility (less blurred vs. more blurred, Experiment 2). Participants then performed a distance Stroop task with the most familiar and the least familiar nonwords. Each of them appeared in either proximal or distant spatial locations in scenes with clear depth cues. The results showed a significant interaction between the word familiarity and the spatial distance: the familiar word was judged faster in proximal locations but slower in distant locations relative to the unfamiliar word. The current findings suggest that metacognitive evaluation of familiarity could be one of the critical factors that underlie the construction of psychological distance.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

Current Status of Systems Biology in Traditional Chinese medicine - in regards to influences to Korean Medicine (최근 중의학에서 시스템생물학의 발전 현황 - 한의학에 미치는 영향 및 시사점을 중심으로 -)

  • Lee, Seungeun;Lee, Sundong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • Objectives : This paper serves to explore current trends of systems biology in Traditional Chinese Medicine (TCM) and examine how it may influence the Traditional Korean medicine. Methods : Literature review method was collectively used to classify Introduction to systems biology, diagnosis and syndrome classification of systems biology in TCM perspective, physiotherapy including acupuncture, herbs and formula functions, TCM systems biology, and directions of academic development. Results : The term 'Systems biology' is coined as a combination of systems science and biology. It is a field of study that tries to understand living organism by establishing a theory based on an ideal model that analyzes and predicts the desired output with understanding of interrelationships and dynamics between variables. Systems biology has an integrated and multi-dimensional nature that observes the interaction among the elements constructing the network. The current state of systems biology in TCM is categorized into 4 parts: diagnosis and syndrome, physical therapy, herbs and formulas and academic development of TCM systems biology and its technology. Diagnosis and syndrome field is focusing on developing TCM into personalized medicine by clarifying Kidney yin deficiency patterns and metabolic differences among five patterns of diabetes and analyzing plasma metabolism and biomarkers of coronary heart disease patients. In the field of physical therapy such as acupuncture and moxibustion, researchers discovered the effect of stimulating acupoint ST40 on gene expression and the effects of acupuncture on treating functional dyspepsia and acute ischemic stroke. Herbs and formulas were analyzed with TCM network pharmacology. The therapeutic mechanisms of Si Wu Tang and its series formulas are explained by identifying potential active substances, targets and mechanism of action, including metabolic pathways of amino acid and fatty acid. For the academic development of TCM systems biology and its technology, it is necessary to integrate massive database, integrate pharmacokinetics and pharmacodynamics, as well as systems biology. It is also essential to establish a platform to maximize herbal treatment through accumulation of research data and diseases-specific, or drug-specific network combined with clinical experiences, and identify functions and roles of molecules in herbs and conduct animal-based studies within TCM frame. So far, few literature reviews exist for systems biology in traditional Korean medicine and they merely re-examine known efficacies of simple substances, herbs and formulas. For the future, it is necessary to identify specific mechanisms of working agents and targets to maximize the effects of traditional medicine modalities. Conclusions : Systems biology is widely accepted and studied in TCM and already advanced into a field known as 'TCM systems biology', which calls for the study of incorporating TCM and systems biology. It is time for traditional Korean medicine to acknowledge the importance of systems biology and present scientific basis of traditional medicine and establish the principles of diagnosis, prevention and treatment of diseases. By doing so, traditional Korean medicine would be innovated and further developed into a personalized medicine.

Study on the Displacement of Crib Wall System (Crib Wall System 변위해석에 관한 연구)

  • Kim, Doo-Jun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.201-209
    • /
    • 2002
  • Crib wall system is one of segmental crib type wall. Crib walls are constructed from separate members with no bonds between them other than frictional. The wall units are divide into two main types termed headers and stretchers. The headers run from the front to the back of the wall, perpendicular to the wall face. The cells are created by forming a grid by stacking individual wall components known as headers and stretchers. The body of wall consists of a system of open cell which are filled with a granular material. The design of crib retaining wall is usually based on conventional design methods derived from Rankine and Coulomb theory so that is able to resist the thrust of soil behind it, because it may be assumed that the wall acts as a rigid body. However, deformation characteristics of crib walls cannot be assumed as monolithic. They consist of individual members which have been stacked to creat a three dimensional grid. Therefore, the segmental grid allows relative movement between the individual member within the wall. The three dimensional flexible grid leads to stress distribution by interaction behavior between soil and crib wall. Therefore, in this study, in order to analysis the trends of deflection of crib wall system, new numerical models based on the results of Brandl's full scale test are introduced for design concept.

Cardiovascular response to surprise stimulus (놀람 자극에 대한 심혈관 반응)

  • Eom, Jin-Sup;Park, Hye-Jun;Noh, Ji-Hye;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.147-156
    • /
    • 2011
  • Basic emotions such as happiness, sadness, anger, fear, and disgust have been widely used to investigate emotion-specific autonomic nervous system activity in many studies. On the contrary, surprise emotion, Suggested also as one of the basic emotions suggested by Ekman et al. (1983), has been least investigated. The purpose of this study was to provide a description of cardiovascular responses on surprise stimulus using electrocardiograph (ECG) and photoplethysmograph (PPG). ECG and PPG were recorded from 76 undergraduate students, as they were exposed to a visuo-acoustic surprise stimulus. Heart rate (HR), standard deviation of R-R interval (SD-RR), root mean square of successive R-R interval difference (RMSSD-RR), respiratory sinus arrhythmia (RSA), finger blood volume pulse amplitude (FBVPA), and finger pulse transit time (FPTT) were calculated before and after the stimulus presentation. Results show significant increase in HR, SD-RR, and RMSSD-RR, decreased FBVPA, and shortened FPTT. Evidence suggests that surprise emotion can be characterized by vasoconstriction and accelerated heart rate, sympathetic activation, and increased heart rate variability, parasympathetic activation. These results can be useful in developing an emotion theory, or profiling surprise-specific physiological responses, as well as establishing the basis for emotion recognition system in human-computer interaction.

  • PDF

Effect on Brand Loyalty in Omni-Channel: Focus on Category Knowledge (옴니채널 상황에서 브랜드 충성도에 관한 연구: 카테고리 지식 조절변수)

  • Han, Sang-Seol
    • Journal of Distribution Science
    • /
    • v.15 no.3
    • /
    • pp.61-72
    • /
    • 2017
  • Purpose - The ICT development is affecting the consumer behaviors in selecting channel or distribution system. This study aims to advance the theory on the influence and interaction with omni-channel behaviors. Specifically, analyzing moderating variable is category knowledge that effect between propensity of brand loyalty and its precedence factor which is perceived difference, perceived value, authenticity and consumer-brand relationship. Research design, data, and methodology - The subject of this research is consumers who purchase goods in omni-channel situation. The hypothesis of this research is derived from the literature of the preceding research analysis on brand loyalty, omni-channel and consumer behaviors. This study have constructs that were defined operationally with reference to previous studies, and the research model was designed to figure out the structural relationship among perceived difference, perceived value, authenticity, consumer-brand relationship and brand loyalty. From 2016 Sept. 1 to Dec. 31, a questionnaire survey was performed targeting customers using omni-channel. 327 questionnaire survey had conducted. 316 survey data were used for empirical analysis except data that had missing and wrong value. AMOS(structural equation) was used to confirm the hypothesis which developed by researcher. Results - The results of this study are as follows. First, an authenticity has significant effect on brand loyalty. Second, in the omni-channel situation, but perceived differentiation, perceived value, consumer-brand relationship does not affect brand loyalty. According to this result, it is judged that it is easy to search for information in the situation of omni-channel and integrated decision making is done without distinction between channels. Third, category knowledge has moderating effect between brand loyalty and precedence factors. When the category knowledge level is low, preceding factors have a significant effect on brand loyalty. when the category knowledge level is high, the preceding factors did not have a significant effect on brand loyalty except the authenticity. Conclusions - This study finds out omni-channel's phenomenon is different from other distribution channel phenomenon. In the situation of omni-channel, it is suggested that brand loyalty may be relatively low for a certain brand because it raises the knowledge level of the category. Then this study provides a managerial implications based on the role of the moderate effect on category knowledge, brand loyalty and omni-channel.