• Title/Summary/Keyword: Interaction Modeling

Search Result 1,085, Processing Time 0.028 seconds

Manifestation examples of group creativity in mathematical modeling (수학적 모델링에서 집단창의성 발현사례)

  • Jung, Hye Yun;Lee, Kyeong Hwa
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.371-391
    • /
    • 2018
  • The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of group activity in mathematical modeling. Second, we examined the meaning and characteristics of group creativity. Six students in the second grade of high school participated in this study in two groups of three each. Mathematical modeling task was "What are your own strategies to prevent or cope with blackouts?". Unit of analysis was the observed types of interaction at each stage of mathematical modeling. Especially, it was confirmed that group creativity can be developed through repetitive occurrences of mutually complementary, conflict-based, metacognitive interactions. The conclusion is as follows. First, examples of mutually complementary interaction, conflict-based interaction, and metacognitive interaction were observed in the real-world inquiry and the factor-finding stage, the simplification stage, and the mathematical model derivation stage, respectively. And the positive effect of group creativity on mathematical modeling were confirmed. Second, example of non interaction was observed, and it was confirmed that there were limitations on students' interaction object and interaction participation, and teacher's failure on appropriate intervention. Third, as teaching learning methods for group creativity, we proposed students' role play and teachers' questioning in the direction of promoting interaction.

Interaction Metaphors for Modeling Virtual Hair using Haptic Interfaces

  • Bonanni, Ugo;Kmoch, Petr;Magnenat-Thalmann, Nadia
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Shaping realistic hairstyles for digital characters is a difficult, long and tedious task. The lack of appropriate interaction metaphors enabling efficient and simple, yet accurate hair modeling further aggravates the situation. This paper presents 3D interaction metaphors for modeling virtual hair using haptic interfaces. We discuss user tasks, ergonomic aspects, as well as haptics-based styling and fine-tuning tools on an experimental prototype. In order to achieve faster haptic rates with respect to the hair simulation and obtain a transparent rendering, we adapt our simulation models to comply with the specific requirements of haptic hairstyling actions and decouple the simulation of the hair strand dynamics from the haptic rendering while relying on the same physiochemical hair constants. Besides the direct use of the discussed interaction metaphors in the 3D modeling area, the presented results have further application potential in hair modeling facilities for the entertainment industry and the cosmetic sciences.

″Issues in designing a Knowledge-based system to support process modeling″

  • Suh, Eui-Ho;Kim, Suyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.50-54
    • /
    • 2001
  • Information systems development entails planning, analysis, design and construction phases. The analysis phase identifying user requirements is the most important of these phases. Since unidentified defects in the early phase causes increased work and costs as development proceeds, the quality of analysis results affects the quality of the resultant system. Major tasks in the analysis phase are data modeling and process modeling. Research on building a knowledge-based system for data modeling have been conducted much, however, not sufficiently for process modeling. As a system environment with high user interaction increases, research on process modeling methods and knowledge- based systems considering such environment are required. In this research, a process modeling framework for information systems with high user interaction is suggested and a knowledge-based system for supporting the suggested framework is implemented. A proposed model consists of the following tasks: event analysis, process analysis, and event/process interaction analysis. Event analysis identifies business events and their responses. Process analysis break down the processes of an enterprise into progressively increasing details. Decomposition begins at the function level and ends when the elementary process level is reached. Event/process interaction analysis verifies the results of process analysis and event analysis. A knowledge-based system for supporting a proposed process modeling framework is implemented in a web-based environment.

  • PDF

Dam-reservoir-foundation interaction effects on the modal characteristic of concrete gravity dams

  • Shariatmadar, H.;Mirhaj, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.65-79
    • /
    • 2011
  • Concrete hydraulic structures such as: Dams, Intake Towers, Piers and dock are usually recognized as" Vital and Special Structures" that must have sufficient safety margin at critical conditions like when earthquake occurred as same as normal servicing time. Hence, to evaluate hydrodynamic pressures generated due to seismic forces and Fluid-Structure Interaction (FSI); introduction to fluid-structure domains and interaction between them are inevitable. For this purpose, first step is exact modeling of water-structure and their interaction conditions. In this paper, the basic equation involved the water-structure-foundation interaction and the effective factors are explained briefly for concrete hydraulic structure types. The finite element modeling of two concrete gravity dams with 5 m, 150 m height, reservoir water and foundation bed rock is idealized and then the effects of fluid domain and bed rock have been investigated on modal characteristic of dams. The analytical results obtained from numerical studies and modal analysis show that the accurate modeling of dam-reservoir-foundation and their interaction considerably affects the modal periods, mode shapes and modal hydrodynamic pressure distribution. The results show that the foundation bed rock modeling increases modal periods about 80%, where reservoir modeling changes modal shapes and increases the period of all modes up to 30%. Reservoir-dam-foundation interaction increases modal period from 30% to 100% for different cases.

Modeling Techniques for Geoenvironmental Engineering Problems

  • Singh, D.N.;Rao, B. Hanumantha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.542-557
    • /
    • 2007
  • Contamination of subsurface results in degradation of geomaterials (i.e., soils and rock mass), in the long run. This is mainly due to the presence of chemical and/or radiological materials in undesirable concentrations and at elevated temperatures. However, as contaminant-geomaterial interaction is an extremely slow and complex process, which primarily depends on their physical, chemical and mineralogical properties, it is quite difficult to study this interaction under laboratory or in situ conditions. In such a situation, accelerated physical modeling, using a geotechnical centrifuge, and finite element/difference based numerical modeling techniques are found to be quite useful. This paper presents details of various modeling techniques developed by the researchers at the Indian Institute of Technology Bombay, Mumbai, India, for studying heat migration, flow and interaction (fate) of reactive and non-reactive contaminants in the geoenvironment, under saturated and unsaturated conditions. In addition, paper presents details of the technique that can be employed for determining susceptibility of a material to undergo physico-chemico-mineralogical alterations due to its interaction with contaminants.

  • PDF

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

3DARModeler: a 3D Modeling System in Augmented Reality Environment (3DARModeler : 증강현실 환경 3D 모델링 시스템)

  • Do, Trien Van;Lee, Jeong-Gyu;Lee, Jong-Weon
    • Journal of Korea Game Society
    • /
    • v.9 no.5
    • /
    • pp.127-136
    • /
    • 2009
  • This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world.

  • PDF

Exploration to Model CSCL Scripts based on the Mode of Group Interaction

  • SONG, Mi-Young;YOU, Yeong-Mahn
    • Educational Technology International
    • /
    • v.9 no.2
    • /
    • pp.79-95
    • /
    • 2008
  • This paper aims to investigate modeling scripts based on the mode of group interaction in a computer-supported collaborative learning environment. Based on a literature review, this paper assumes that group interaction and its mode would have strong influence on the online collaborative learning process, and furthermore lead learners to create and share significant knowledge within a group. This paper deals with two different modes of group interaction- distributed and shared interaction. Distributed interaction depends on the external representation of individual knowledge, while shared interaction is concerned with sharing knowledge in group action. In order to facilitate these group interactions, this paper emphasizes the utilization of appropriate CSCL scripts, and then proposes the conceptual framework of CSCL scripts which integrate the existing scripts such as implicit, explicit, internal and external scripts. By means of the model regarding CSCL scripts based on the mode of group interaction, the implications for research on the design of CSCL scripts are explored.

A case study on supporting mathematical modeling activities through the development of group creativity (집단 창의성 발현을 통한 수학적 모델링 활동 지원 사례 연구)

  • Jung, Hye-Yun;Lee, Kyeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.2
    • /
    • pp.133-161
    • /
    • 2019
  • In this paper, we analyzed the case of supporting the mathematical modeling activities through the group creativity in everyday class of 9th grade. The details are as follows. First, through the theoretical review, the meaning of group creativity according to sociocultural perspective and the sociocultural characteristics of mathematical modeling were confirmed. Second, we experimented in a classroom consisting of 5 groups of 4 students, and conducted a case study focusing on a well developed group of group creativity. The results are as follows. First, group creativity with various types of interaction and creativity synergy was observed at each stage of mathematical modeling. According to the stag e of mathematical modeling and the type of interaction, different creative synergy was developed. Second, the developed group creativity supported each step of mathematical modeling. According to the stage of mathematical modeling and the type of interaction, group creativity supported mathematical modeling activities in different directions.